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	 Abstract: Background: Skin disease image analysis has drawn extensive attention from researchers, 
which can help doctors efficiently diagnose skin disease from medical images. Existing reviews have 
focused only on the specific task of skin disease diagnosis based on a single medical image type.  

Discussion: This paper presents the latest and comprehensive review of image analysis methods in 
skin diseases, and summarizes over 350 contributions to the field, most of which appeared in the last 
three years. We first sort out representative publicly available skin datasets and summarize their char-
acteristics. Thereafter, aiming at the typical problems exposed by datasets, we organize the image pre-
processing and data enhancement part. Further, we review the single tasks of skin disease image analy-
sis in the literature, such as classification, detection or segmentation, and analyze the improvement 
direction of their corresponding methods. Additionally, popular multi-task models based on structure 
and loss function are also investigated.  

Conclusions: Challenges involved from the aspects of the dataset and model structure have been dis-
cussed.	
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1. INTRODUCTION 

 Skin diseases are common in people of different regions, 
races, and age groups in the world, and the incidence is also 
high. Human skin usually exhibits symptoms including can-
cer, inflammation and infectious diseases under the induc-
tion of adverse environmental factors (such as radiation and 
lifestyle). There are more than 2,000 types of skin diseases, 
among which malignant tumors with a high fatality rate are 
the most harmful, mainly melanoma. Compared with other 
types of skin diseases, these diseases will easily cause more 
deaths [1-3]. Early diagnosis is a decisive factor in the re-
covery of patients with skin diseases. Although the mortality 
rate of malignant tumors is very high, this type of disease is 
also one of the easiest cancers to treat if it can be diagnosed 
at an early stage. Therefore, the research on early diagnosis 
of skin diseases has aroused widespread concern in the aca-
demic and medical circles. 
 Nowadays, professional dermatologists generally use 
different non-invasive techniques to obtain medical images 
corresponding to the diseased area and diagnose the patient's 
disease. However, the actual clinical application requires a 
very strict medical diagnosis, among which high medical 
cost and the subjectivity of the doctor's diagnosis are the 
two main limitations of medical diagnosis. According to 
statistics, there are only about 20,000 registered dermatolo-
gists in my country, the doctor-patient ratio is extremely  
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wide, and the supply-demand relationship is seriously out of 
balance. At the same time, the distribution of high-quality 
medical resources is also very uneven, and there are almost 
no professional dermatologists in primary medical institu-
tions. Cultivating an excellent doctor requires high costs. 
Although grassroots doctor training has been carried out all 
over the country, it is still difficult for doctors or nurses in 
many grassroots medical institutions to reach the standard 
level of diagnosis in a short time. Besides, due to the differ-
ence in the medical experience of some doctors and the in-
terference of external factors (such as long-term fatigue), 
personal subjective bias is caused. This kind of doctor's di-
agnostic subjectivity also greatly affects the correct diagno-
sis of skin diseases. Considering the limitations of these two 
aspects, it is necessary to develop some methods to assist 
doctors in diagnosis. 
 For some skin cancers, such as melanoma and basal cell 
tumor, there is predictability due to their regular characteris-
tics. Traditional medical image analysis focuses on the con-
struction of visual features, and then uses the classifier to 
realize the diagnosis. Generally, the features of lesions in-
volved in the diagnosis of skin diseases cannot be captured 
by artificial feature extraction algorithms (such as SIFT [4], 
CN [5]). The feature construction stage of such tasks is usu-
ally based on the judgment rules with certain popularity in 
the industry and practical clinical significance. Some of the 
rule recognition methods focus on identifying all possible 
diseases according to the description of category features 
(such as pattern analysis [6]). Some methods are only used 
to identify features related to melanoma (such as 7-point 
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checklist [7] and Menzies method [8]). The other is to ana-
lyze and diagnose the disease by combining the boundary 
definition, asymmetry, color status and shape of the lesion 
(such as ABCD [9] rule and CASH [10] rule). Popular clas-
sifiers (such as support vector machines (SVMs) [11], ran-
dom forest classifier (RF) [12], k-nearest neighbor algo-
rithm (KNN) [13], decision tree (DT) [14] and so on) are 
generally selected to complete this task. Compared with 
expert diagnosis, traditional CAD can improve the subjec-
tivity of diagnosis, and the diagnosis result is more objective 
and reliable. However, using the known evaluation rules 
will consume a lot of manpower, material resources and 
time cost in handcrafted data processing, which cannot 
reach the generalization ability required in the actual situa-
tion. Therefore, there is an urgent need for computer-aided 
diagnosis algorithms with higher accuracy and stronger ro-
bustness in the field of medical diagnosis. 
 With the advancement of artificial intelligence technolo-
gy, various computer-aided diagnosis (CAD) systems are an 
effective way to solve the above-mentioned medical diagno-
sis problems. "Artificial intelligence + Medical", or smart 
medical for short, has become one of the interdisciplinary 
subjects with the most development potential and applica-
tion prospects in the field of artificial intelligence. The prac-
tice has proved that CAD has played a very positive role in 
improving diagnosis accuracy, reducing missed diagnosis, 
and improving work efficiency. 
 In recent years, the improvement of GPU computing 
power has promoted the rapid development of Convolution-
al Neural Network (CNN), Recurrent Neural Network 
(RNN) and Auto Encoder (AE), making it possible to train 
deep neural networks. Deep learning can learn some abstract 
features that are difficult to be designed artificially, so 
sometimes it can gain much better performance than artifi-
cial features. There are many examples of research using 
CNN in the field of auxiliary diagnosis of skin diseases. The 
most representative is the 2017 Stanford team Esteva's re-
search. They used the InceptionV3 network to train a binary 
classifier for classifying benign and malignant skin cancers, 
and reached the diagnostic level of professional dermatolo-
gists [15]. Encouraged by this, many researches based on 
CNN have emerged, and CNN has its presence in various 
medical data fields. The essence of deep learning is driven 
by data to find better network weights that can represent the 
characteristics of data. 
 Most of the data in the field of skin disease diagnosis are 
presented in the form of images. The visual features of skin 
lesions are the most critical diagnostic factor in the diagno-
sis process of skin diseases, so there are currently many 
studies based on various skin disease images [2, 16, 17]. A 
dermoscopy image is more suitable for tumor, and it further 
confirms related clinical diagnosis. It has the characteristics 
of high permeability and clear background. Most researchers 
like to use dermoscopy images for research on dermatologi-
cal auxiliary diagnosis algorithms [18, 19]. The clinical im-
age acquisition method is the first procedure in the actual 
clinical consultation, so it is suitable for a wide range of 
diseases. Due to the convenience of its acquisition, clinical 
images are usually accompanied by great interference, so 
there are many researches based on such images [20]. In 

addition, there are some studies based on pathological imag-
es, but due to the limitation of the amount of data, such 
studies are not very sufficient [21]. 
 Image analysis tools have a great influence on skin dis-
ease diagnosis. Dermatologists can use these tools to over-
come the above problems. These systems usually follow a 
pipeline: I) image preprocessing, II) lesion boundary detec-
tion, III) lesion segmentation and IV) lesion classification. 
Image preprocessing is a necessary step to process images 
whose quality is not enough for analysis. As a part of image 
preprocessing, lesion boundary detection is also the premise 
of lesion segmentation. Lesion segmentation is the process 
of obtaining the region of interest, which is necessary for the 
correct feature extraction and subsequent lesion characteri-
zation. Lesion classification is a task in which the diagnosis 
system automatically extracts features from medical images 
and gives the results. Therefore, the important part of this 
paper was to review the literature on several specific tasks 
of image analysis in the field of dermatology. Fig. (1) shows 
several explorations of deep learning in skin disease image 
analysis.  
 In this paper, we did not follow the steps of CAD to car-
ry out a comprehensive review of the latest research on im-
age intelligent analysis technology in the field of skin dis-
ease diagnosis. There were other reviews in the field of skin 
disease diagnosis, and some of the methods proposed were 
outdated. We reviewed the latest research literature in the 
field of skin disease diagnosis in the last three years. This 
was illustrated in Fig. (2), so that we could guide readers 
with more accurate research trends. Different from other 
reviews that only focused on one type of task or one type of 
image data acquisition in the field of skin disease diagnosis, 
the types of research image acquisition we reviewed include 
dermoscopy images, clinical images, and histopathological 
images. Similarly, the specific tasks we studied include dis-
ease classification, lesion boundary detection, and lesion 
segmentation. In addition, we also discussed the challenges 
that still exist in the field of dermatological diagnosis and 
provided guidelines for dealing with these challenges in the 
future. Through this paper, people can intuitively understand 
the development process of image analysis technology in 
the field of skin disease diagnosis at an appropriate level. 
Secondly, it can also provide research directions for those 
who are willing to work further in this field in the future. 
The remainder of this paper was structured as follows. Sec-
tion 2 introduced common skin disease image acquisition 
methods and research-approved public skin disease datasets. 
In Section 3, we introduced data preprocessing techniques 
and data enhancement methods. In Sections 4 and 5, we 
drew on the applicable literature of intelligent image analy-
sis in the skin disease diagnosis task, and introduced the 
classification, detection, and segmentation tasks in the field 
of skin disease diagnosis according to the difficulty of entry 
into the specific task model. Section 6 expands more meth-
ods of image intelligent analysis in skin disease diagnosis 
tasks. Then, in Section 7, we discussed the problems ex-
posed in recent research methods and future research direc-
tions. Finally, Section 8 represents our summary of the full 
text. 
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Fig. (1). several explorations of deep learning in skin disease image analysis. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 

 
Fig. (2). Breakdown of the papers included in this survey in year of publication, task addressed and imaging modality. (A higher resolution / 
colour version of this figure is available in the electronic copy of the article). 
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2. SKIN DISEASE IMAGE ACQUISITION AND 
DATASET 

 Most dermatology diagnoses can be performed by visual 
examination of the skin. Equipment-assisted visual exami-
nation is important for dermatologists, because it can pro-
vide important help for early accurate diagnosis of derma-
tology. Different non-invasive imaging techniques are im-
portant auxiliary means in the process of examination. Der-
moscopy images can enlarge the fine features of skin dis-
eases as needed so that experienced dermatologists can 
overcome the problems caused by the perception of small-
scale skin damage [22]. Clinical images, also called macro 
images, reproduce the position of clinicians in living organ-
isms that the naked eye sees, and can be used for most skin 
diseases [23]. Histopathological images can observe the 
internal structure of the lesions, which is very helpful for the 
accurate analysis of pathology. The diagnosis information of 
reflection confocal microscope (RCM) image is like histol-
ogy, which is based on the morphological and cytological 
features of the tissue under a microscope. However, com-
pared with histology, the lack of tissue-specific color con-
trast makes RCM images more difficult to analyze.  

2.1. Dermoscopy Image 

2.1.1. Description of Dermoscopy Image 

 In the field of medical diagnosis, most skin diseases can 
be directly observed and diagnosed by several dermatolo-
gists (such as vitiligo, psoriasis and other skin lesions), but 
it requires years of consultation experience and correspond-
ing medical knowledge. However, the characteristics of 
some skin diseases (such as cell carcinoma) are difficult to 
be observed directly, which requires physical means to en-
large the affected skin. Dermoscopy imaging is to optimize 
the diagnosis technology of skin diseases by using such 
characteristics. 
 Dermoscopy imaging technology is one of the most 
widely used image acquisition methods in dermatology, and 
it is a non-invasive PSL imaging technique. It allows visual-
ization of its subsurface structure by hand-held incident 
light magnification equipment (composed of high resolution 
digital single-lens reflection (DSLR) and optical microscope 
[24]) and immersion fluid (with a refractive index that 
makes the skin stratum corneum more transparent to light 
and eliminates reflection), making the subcutaneous struc-
ture easier to see than traditional clinical images [25, 26, 
27]. A major change in dermoscopy is the replacement of 
cross-polarized light with unpolarized light. This allows 
doctors to capture almost the same image in different situa-
tions. However, the "almost" part is the reason for the subtle 
differences in the visualization of lesions [25, 28], so the 
application of dermoscopy images will be strictly limited. 
 Dermoscopy images generally have uniform light and 
more differentiation, which can not only enlarge the lesion 
area of the skin but also eliminate some light interference. 
Fig. (3) shows some examples. This technique can assist in 
diagnosis and analysis by enhancing the characteristics of 
the skin lesions. It is helpful for professional doctors to 
identify and detect the morphological structure of skin le-
sions. However, the two main limitations of dermoscopy are 

its subjectivity and the requirement of extensive training. It 
has been demonstrated in the article that dermoscopy may 
reduce the diagnostic accuracy of inexperienced dermatolo-
gists [29]. 
2.1.2. Common Datasets of Dermoscopy Image 

 The most used is the public dataset provided by the in-
ternational skin imaging collaboration (ISIC) [30]. The or-
ganization is sponsored by the international society for digi-
tal skin imaging, an international organization to improve 
the diagnosis of melanoma. ISIC archives is a large-scale 
international repository of dermoscopy images specially set 
up for clinical knowledge training and image challenge, 
including tens of thousands of images acquired from inter-
national clinical centers. Since the first image challenge was 
held in 2016, new supplementary categories or new chal-
lenges have been added every year. Among them, the image 
quality is high, and there is no watermark, and the two main 
types are nevus and melanoma. 
 The Dermofit dataset [31] is provided by the researchers 
of Edinburgh University, UK. The data quality is high, and 
it is widely used by researchers, but it is not free for the 
public. Dermofit included 10 types of skin diseases: actinic 
keratosis (45), basal cell carcinoma (239), pigmented nevus 
(331), seborrheic keratosis (257), squamous cell carcinoma 
(88), intraepithelial carcinoma (78), pyogenic granuloma 
(24), hemangioma (97), dermatofibroma (65) and malignant 
melanoma (76), totaling 1,300. 
 The published dermoscopy image PH2 dataset [32] is 
also commonly used as a benchmark dataset for evaluating 
melanoma diagnostic algorithms, including 160 nevi and 40 
melanoma images. Each image is accompanied by compre-
hensive metadata, including medical segmentation mask, 
clinical diagnosis (all) and histological diagnosis (part) of 
the lesion, and medical annotation of several dermoscopy 
criteria. 
 The above publicly available datasets for skin diseases are 
listed in Fig. (4). Observing the several dermoscopy image 
datasets mentioned above, we can draw the following conclu-
sions: 1) Since the acquisition conditions of dermoscopy im-
ages are relatively difficult, the total amount of data in the 
published datasets is not very large. In the context of machine 
learning algorithms, if it is directly applied to the segmenta-
tion or classification of skin lesions, the training and learning 
of model parameters are likely to be over-fitted, and the diag-
nostic effect will be greatly affected. 2) There are too few 
types of skin diseases in the public dataset, resulting in Based 
on the existing research tasks of the public dataset, the re-
search objects are mostly melanoma-based skin diseases. In 
the actual clinical situation where there are many types of 
subdivisions, it is necessary to grasp the specific disease to 
provide specific disease diagnosis and treatment; the general-
ization of the research model effect may not be strong 
enough. 3) The number of categories in the public dataset is 
not balanced. It is easy to artificially bring the difficulty of the 
sample to the model learning. When the model cannot clearly 
determine the disease category, it will tend to classify the 
object into a large sample category. At the same time, the 
feature information contained in categories with a small num-
ber of samples has great limitations, resulting in a very low 
recognition rate of this category. 
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Fig. (3). Dermoscopy images. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

 

 
Fig. (4). Common dermoscopy image public datasets, the ordinate is the name of the dataset, the abscissa is the logarithmic scale (lg) to 
stack the size of the dataset, and the color block length ratio is used to visualize the percentage of various diseases. The diseases include 
Nevus (Nev), Melanoma (Mel), seborrheic keratosis (SK), basal cell carcinoma (BCC), actinic keratosis (AK), dermatofibroma (DF), he-
mangioma (VASC), benign keratosis (BK), squamous cell carcinoma (SCC), intraepithelial carcinoma (IEC), pyogenic granuloma (PYO). 
(A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (5). Clinical images. (A higher resolution / colour version of this figure is available in the electronic copy of the article). (A higher resolu-
tion / colour version of this figure is available in the electronic copy of the article). 

 

2.2. Clinical Image 

2.2.1. Description of Clinical Image 

 Compared with the dermoscopy image, the clinical im-
age acquisition method is much more convenient. The im-
age for clinical diagnosis can be obtained by aiming at the 
patient's part through a professional camera or smartphone. 
The purpose of dermoscopy is to enhance the area of the 
lesion, but the size and location of the lesion will be ig-
nored. Therefore, clinical images can make up for the short-
age of dermoscopy, and its convenience will provide an 
absolute driving force for the application of auxiliary diag-
nosis in the future, such as remote examination, and patient 
medical records [33]. 
 However, due to the influence of shooting angle and 
light intensity, clinical images are almost obtained under 
different light conditions and uneven focus. This will lead to 
the external interference of the original clinical image, 
which is also a problem to be solved in the current research. 
Fig. (5) shows some examples. 
 

2.2.2. Common Datasets of Clinical Image 

 Dermoscopy images have many large public datasets, 
and the quality of the diagnostic labels of the datasets can be 
recognized by the international research team. Comparative-
ly speaking, the quality of clinical image datasets is not as 
good as that of dermoscopy images (because of the relative-
ly low threshold of acquisition), which leads to a wide range 
of sources, and many datasets are not so highly recognized 
in the field of professional research.  
 MED-NODE dataset [34] includes 70 melanoma and 
100 nevus images. Each picture of skin disease is clearly 
representative and comes from different patients. The da-
taset has no watermark and is available for free download.  
 Derm101 dataset [35] is a comprehensive website 
providing clinicians with various online resources, with the 
latest treatment suggestions for various skin conditions, as 
well as high-quality diagnostic images. The dataset contains 
22,979 clinical images of 525 categories. Each image con-
tains the basic clinical diagnosis label and the location in-
formation of skin lesions. These data are free for academic  
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research. The biggest advantage of this dataset is that there 
is no watermark information in its image, which is conven-
ient for us to carry out subsequent image analysis and pro-
cessing. This dataset was not updated starting from Decem-
ber 2019. 
 SD-198 dataset [36] is a public clinical dermatology 
image dataset. These images were acquired by digital cam-
eras and mobile phones, covering many patients' conditions, 
such as age, gender, disease location, skin color and differ-
ent stages of the disease. The dataset includes 6,584 images 
from 198 categories. The color, exposure, illumination and 
scale of the image are different.  
 Dermnet dataset [37] is a comprehensive website provid-
ing a variety of dermatology resources for online medical 
education through articles, photos and videos. There are 
nearly 23,000 clinical images (watermarked) and more than 
500 kinds of skin diseases in the Dermnet image library. 
These data are free for academic research. However, each 
image in this dataset has only a diagnostic tag and no other 
tags. 
 Atlasderm dataset [38] is a website of a clinical image 
database of skin diseases from Brazil, which has 534 cate-
gories and 11,009 images. Due to geographical constraints, 
most of the patients acquired in this dataset are black peo-
ple, each image has only the label of the diagnosis name, 
and the image has the watermark of the dataset website.  
 Danderm dataset [39] is a website for a clinical image 
dataset of skin diseases from Denmark. There are 91 types 
of clinical images in this dataset. Most of the patients ac-
quired in this dataset are white people, and only have the 
label of the diagnosis name, and contain the watermark in-
formation of the website. The Atlas holds more than 3,000 
clinical pictures and is still expanding.   
 DermIS dataset [40] is a free public dataset compiled 
and published by Heidelberg University in Germany. There 
are 7,172 images in the database, which are divided into 735 
categories. In addition to the conventional diagnostic name 
tag, each image in the dataset also has text description such 
as race information, lesion location information and age 
information. The disadvantage of the dataset is that it has 
too many categories, the number of images in each category 
is not large, and the image contains the watermark of the 
dataset website.  
 Asan dataset [41] was acquired from the Asan medical 
center facility. After excluding the insufficient postoperative 
images, 17,125 clinical images were selected from 4,867 
patients for 12 kinds of skin diseases. Some of the test set 
images can be downloaded. 
 MoleMap [42] is a dataset containing 102,451 images of 
25 skin conditions. In particular, the cancerous classification 
includes melanoma, basal cell carcinoma and squamous cell 
carcinoma. MoleMap contains a paired combination of clin-
ical images and dermoscopy images. It does not support 
direct downloading, and data are obtained through coopera-
tion in existing literatures. 
 In addition, there are some high-quality data sets waiting 
to be made public, such as XiangyaDerm [20], which has 
107,565 images covering 541 skin diseases. 

 Fig. (6) listed several datasets that are relatively fre-
quently used in research. Observing several sets of datasets, 
we can understand: 1) Most of the datasets are watermarked, 
which brings additional challenges to preprocessing. 2) The 
volume of the dataset is much larger than that of the der-
moscopy image dataset, of which the MoleMap dataset con-
sists of 102,451 images. Because the source and method of 
obtaining clinical images are easier, the matching algorithm 
should be more advantageous in terms of quantity. 2) There 
are many types of diseases in the dataset. The DermIS da-
taset has the most 735 types of skin diseases. Ideally, the 
trained model will have better generalization ability. 

2.3. Histopathological Image 

2.3.1 Description of Histopathological Image 

 Histopathological images of skin biopsy are widely used 
in dermatology. It is very important for dermatologists to un-
derstand the potential causes of specific diagnosis through 
quantitative analysis of digital pathology. Therefore, it is gen-
erally believed that biopsy histopathological images are the 
gold standard for the diagnosis of skin cancer [43]. The prep-
aration and biopsy process of histopathology need to provide 
a more comprehensive view of the disease tissue with the 
help of slide, which can retain the potential tissue structure 
and observe the fine features at the cellular level. Therefore, 
in the task of automatic image analysis, appropriate use of 
this micro spatial information can often obtain more specific 
and more detailed representation of skin diseases from the 
perspective of pathology. However, the acquisition and pro-
cessing of histopathological images have the most stringent 
requirements, and the image itself has a super large order of 
pixel expression (according to research: the acquisition of 
patients with 12 to 20 samples will produce 2.5-4 billion pix-
els [44]), which makes the analysis of these images more dif-
ficult and requires higher performance of high-resolution al-
gorithm processing. Fig. (7) shown some examples. 
 All of the public datasets in skin disease task can be 
found in Table 1. 
2.3.2. Common Datasets of Histopathological Image 

 Considering the difficulty of application of histopatho-
logical images and the complexity of access, large datasets 
are extremely rare in the research of skin disease auxiliary 
diagnosis based on histopathological images. In 2020, the 
international agency for cancer released a dataset of 2,860 
images: The Cancer Genome Atlas (TCGA) [45], as shown 
in Fig. (8). 
 After summarizing the attributes and characteristics of 
the dataset, the following points were found: 1) The imbal-
ance between the data categories still exists, which is caused 
by the actual incidence of disease and the actual situation of 
the medical treatment rate. 2) Compared with other types of 
images, histopathology images have a high resolution and a 
large amount of annotation information. 

3. IMAGE PREPROCESSING AND DATA 
AUGMENTATION 

 In Section 2, we sorted out and compare some publicly 
available skin datasets of dermoscopy image, clinical image 
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Fig. (6). The published clinical image datasets. The ordinate is the name of the dataset, and the abscissa is a logarithmic scale (lg) to stack 
the datasets and the number of diseases. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

 

 
Fig. (7). Histopathological images. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Table 1. All of the public datasets in skin disease task. 

Image Dataset (Category) Number Kind 
Typical Disease 

Notes 
Nev Mel 

Dermoscopy 
image 

ISIC2020 [30] 33,126` 2 32,542 584 

The image quality is high and there is no watermark, and the 
two main types are nevus and melanoma. 

ISIC2019 [30] 25,331 8 12,875 4,522 

ISIC2018/HAM10000 [30] 10,015 7 6,705 1,113 

ISIC2017 [30] 2,750 3 1,843 521 

ISIC2016 [30] 1,279 2 1,006 273 

Dermofit [31] 1,300 10 331 76 
It is widely used by researchers including 10 types of skin dis-

eases, but it is not free for public.  

PH2 [32] 200 2 160 40 

Each image is accompanied by comprehensive metadata, in-
cluding medical segmentation mask, clinical diagnosis (all) and 
histological diagnosis (part) of the lesion, and medical annota-

tion of several dermoscopy criteria 

Clinical 
image 

MED-NODE [34] 170 2 \ \ 
The dataset has no watermark and is available for free  

download. 

Danderm [35] 3,000 91 \ \ 
Most of the patients acquired in this dataset are white people, 

and contain the watermark information of the website. 

SD-198 [36] 6,584 198 \ \ 
These images were acquired by digital cameras and mobile 

phones, covering many patients' conditions, such as age, gender, 
disease location, skin color and different stages of disease 

DermIS [37] 7,172 735 \ \ 

In addition to the conventional diagnostic name tag, each image 
in the dataset also has text description such as race information, 
lesion location information and age information, and the image 

contains the watermark of the dataset website. 

AtlasDerm [38] 11,009 534 \ \ 
Most of the patients acquired in this dataset are black people, 

each image has only the label of diagnosis name, and the image 
has the watermark of the dataset website. 

Asan dataset [39] 17,125 12 \ \ 
It was acquired from the Asan medical center facility. Some of 

the test set images can be downloaded. 

Dermnet [40] 18,974 626 \ \ 
These data are free for academic research. However, each image 

in this dataset has only a diagnostic tag and no other tags. 

Derm101 (Including 
DermQuest) [41] 

22,979 525 \ \ 

Each image contains the basic clinical diagnosis label and the 
location information of skin lesions. These data are free for 

academic research. The biggest advantage of this dataset is that 
there is no watermark information in its image. This dataset was 

not updated starting from December 2019. 

MoleMap [42] 102,451 25 \ \ 
It contains a paired combination of clinical images and dermos-
copy images. It does not support direct downloading, and data 

are obtained through cooperation in existing literatures. 

Pathological 
image 

The Cancer Genome Atlas 2,875 5 2323 \ 

Each step in the Genome Characterization Pipeline generated 
numerous data points, such as: 

clinical information (e.g., smoking status) 

molecular analyte metadata (e.g., sample portion weight) 

molecular characterization data (e.g., gene expression values) 
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Fig. (8). Histopathology image dataset The Cancer Genome Atlas [45]. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 

 
and histopathological image. In a conclusion, several com-
mon problems were exposed there, such as the mixture of 
chroma and brightness, blurred boundary, artifacts shade. 
We propose the targeted part of image preprocessing and 
data enhancement to deal with these problems. 

3.1. Image Preprocessing 

 Because the dermoscopy images and clinical images are 
all composed of RGB three channels, multi-channel image 
input is more difficult for the model to process. Therefore, 
before the dataset image is used as the model input, the nec-
essary channel conversion is always performed. One is to 
convert a multi-color channels image to a single-color chan-
nel. The color information of skin lesions is easier to obtain 
better contrast difference in a single channel. For example, 
Poynton et al. [46] believed that a separate blue channel 
could be used for skin lesion detection. There are also some 
methods to perform appropriate transformation processing 
on the original image. This practice facilitates further ex-
traction of specific information, such as Pratt et al. [47] ver-
ified that the combination of Karhunen-LoPve spatial trans-
form variance and maximum variance eliminated the corre-
lation between multi-dimensional data to a certain extent. 
The channel input processed in this way could provide bet-
ter diagnostic results. 
 Although the RGB channel can perform quite well on 
some tasks, considering the mixture of chroma and bright-
ness, RGB is not a good choice for skin disease image anal-
ysis. Different color spaces tend to focus on different visual 
characteristics. In addition to RGB, commonly used color 
spaces include hue-based HSV and brightness-based 
YCbCr. People's normal skin color is greatly affected by 
brightness in RGB color space. That is to say, after pro-
cessing in this space, skin color points are discrete points 
with many non-skin color embedded in the middle, which 

leads to a difficult challenge to distinguish normal skin parts 
from abnormal skin parts in RGB color space. If RGB is 
converted to YCrCb space, Y(brightness) can be ignored. So 
the space is very little affected by brightness, skin color will 
produce a good clustering. At the same time, when the 
channel is reduced to CrCb two dimensions, the sample 
points will form certain shapes, which is very good for pro-
cessing pattern recognition. Ahmad et al. [48] experimental-
ly proved that better model performance could be achieved 
by converting data from RGB channel to YCrCb in skin 
segmentation task. For specific skin disease image analysis 
tasks, it is sometimes necessary to convert the original im-
age from RGB to YCbCr color space. However, the actual 
detection ability of the model after the color space conver-
sion is still unstable and easily affected by environmental 
factors. Many studies have proved that color constancy al-
gorithms, such as grayscale, maximum-RGB, can be used to 
improve the performance of artificial intelligence algorithms 
for image classification [49, 50]. 
 It is known that images with blurred boundary of lesions 
will affect the fit of the model. For example, low-contrast 
images will increase the difficulty of lesion segmentation 
and classification. Contrast enhancement is one of the most 
effective methods in image preprocessing. Recent studies 
have verified different types of contrast enhancement meth-
ods. Gomez et al. [51] used histograms to enhance image 
color channels, which could effectively separate skin lesions 
and background areas. However, in the actual histogram 
equalization, a completely flat histogram can rarely be ob-
tained directly. Some studies further discussed adaptive his-
togram equalization [52, 53]. Since human eyes cannot intu-
itively capture changes in RGB color space, HSV color 
space is different, and it will have a much higher match with 
human eyes. Iyatomi et al. [54] proposed a regression model 
based on HSV color space and verified its excellent effect 
on color correction. Schaefer et al. [55] stated that the com-
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bination of gray world algorithm and maximum RGB algo-
rithm can improve the diagnostic effect of the model. Baratu 
et al. [49] analyzed different types of color contrast algo-
rithms, summarized, and showed their comparison results. 
 In the process of collecting medical image data, artifacts 
are easily introduced. Artifacts can be roughly classified 
into two types that are related to the patient (such as hair, 
skin lines and blood vessels that have a greater impact in 
clinical images) or machine-related (such as vacuoles, re-
flections, and black frames generated during dermoscopy 
image acquisition). These human factors can bring mislead-
ing color and texture information and hinder further analysis 
of the lesion. The detection and removal of hair becomes the 
most significant step in the handcrafted removal process that 
has the most significant impact on the model results. One of 
the difficulties is to remove the cross hairs while introducing 
as little new interference as possible (such as blur and dis-
tortion) to the original image [56]. Bisla et al. [57] proposed 
a data purification method to remove occlusions in the im-
age to achieve a more balanced dataset. Jafari et al. [58] 
investigated the related technical methods of hair removal, 
and compared the similarities and differences and the scope 
of applicability. For more accurate segmentation and classi-
fication, algorithms including threshold [59, 60], morpholo-
gy [61, 62, 63] and deep learning [64, 65, 66] should be 
used to remove hair or other irrelevant things from skin dis-
ease images. There were also many studies raising that 
combining morphology and partial calculus [67, 68] meth-
ods for related hair detection tasks had good results. 
 In order to deal with the many noises and interferences 
in the dermoscopy image itself, previous studies have tried 
many different filters (such as Gaussian filtering, mean fil-
tering, median filtering and diffusion filtering) to solve the 
applicable problems. However, when selecting filters for 
specific auxiliary diagnosis systems, more consideration is 
often given to the calculation of the actual model and the 
time cost. 
 Clinical images generally have a large size, but the parts 
involved in the skin lesions are often small or even biased. It 
is difficult to accurately learn the characteristics of the skin 
lesions on the original image size during model training. 
Celebi et al. [69] showed that the accurate location of the 
skin lesions significantly improved the results of the skin 
lesion segmentation task, and it could help the model to 
evaluate the size of the skin lesion area. Accurate position-
ing helps the segmentation method based on contour [70, 
71, 72], so that the model can extract more relevant features 
from the processed image. There were many different meth-
ods [73, 74] to solve the problem of skin lesion location. 
Among them, Celebi et al. [74] suggested a threshold-based 
method to show better results. But it's hard to determine the 
threshold without a lot of experience. Deep learning can 
increase the receptive field of the model by using convolu-
tion operation, and can strengthen the utilization of macro-
lesion location information. Nver et al. [75] verified the 
advantages of deep learning in lesion location. In the re-
search, this part of the task was summarized as the focus 
boundary detection task, which we introduced in detail in 
Section 5. 

 In the public dataset, skin lesion images are acquired 
with different lighting settings and collection equipment, 
which may reduce the performance of the artificial intelli-
gence system. Generally, CNNs require inputs with a specif-
ic square size (such as 224 × 224 and 512 × 512, etc.). 
Therefore, it is necessary to resize or crop the images of the 
research dataset to adapt them to CNNs. It should be noted 
that resize and crop the image directly to the required size 
may cause object distortion or loss of a lot of information 
[76, 77]. The current feasible idea to solve this problem is to 
resize to a uniform resolution along the shortest side while 
maintaining the original aspect ratio of the image. 
 At the same time, in order to accelerate the model con-
vergence and reduce the influence of the variance of data 
characteristics, the image is normalized by subtracting the 
average value and then dividing by the standard deviation. 
The standard deviation is calculated in the entire training 
subset and then input to CNNs. But under normal circum-
stances, if the brightness and chromaticity of skin disease 
images are very different across the entire dataset, subtract-
ing a uniform average value could not be a good way to 
normalize the illumination of a single image [77, 78]. To 
solve this problem, the experimental results of Yu et al. [77] 
showed that simply subtracting the uniform average pixel 
value reduced the performance of the deep network. And it 
was proposed to realize the normalization of the image 
channel by calculating the average intensity of the channel 
of a single image. 

3.2. Data Augmentation 

 In the context of deep learning, the larger the scale and 
the higher the quality of the data, the better the generaliza-
tion ability of the model, and the data directly determines 
the upper limit of model learning. Due to the different inci-
dence of skin diseases and the difficulty in obtaining effec-
tive skin lesion images of patients with skin diseases, all 
existing datasets have some common defects: the total 
amount of datasets is not enough and the total amount of 
data between categories is imbalanced. Data enhancement 
can improve the size and quality of the existing training data 
set, thereby providing the generalization ability and robust-
ness of the deep learning model, and preventing over-fitting 
in later applications. In the field of skin disease image diag-
nosis and analysis, the solution of data enhancement is to 
reduce many data set limitations of the model through image 
transformation and image generation technology, such as 
the ubiquitous data set imbalance phenomenon. 
 Data augmentation technology can be divided into two 
categories: supervised and unsupervised. Supervised data 
augmentation methods mainly include traditional image 
processing methods based on single sample and multiple 
samples. The augmentation method of a single sample is to 
make a certain transformation operation based on the origi-
nal data. This mainly includes geometric transformation 
operations (random cut, zoom, rotation, stretch, horizontal 
and vertical flip, etc.), color transformation operations (col-
or jitter, color space, etc.) and pixel transformation (noise, 
blur, fusion, etc.) [79]. Nyíri et al. [80] concluded that com-
pared to geometric transformations, such as rotation and 
flipping does not seem to help skin disease image diagnosis 
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at all, but the effect of color transformation was better. Be-
cause the geometric transformation has a probability of 
causing an increase in irrelevant data, these data may have 
nothing to do with the presentation of the task object, which 
is completely misleading. Although color transformation is 
more diversified than geometric transformation, for color-
sensitive lesions, rash use of color transformation may cause 
underfitting of the model [81]. The essence of the augmen-
tation method based on multiple data is to synthesize a new 
image like the original data. The main methods are SMOTE 
[82], mixup [83], Sample Pairing [84] and CUTMIX [85] 
which can continue the discrete original data to fit the new 
data distribution. Many studies have proved that supervised 
data augmentation operations improve the diagnosis of skin 
cancer [86, 87, 88, 89]. 
 The Auto-augmentation [90] using automatic search 
strategy selection sub- augmentation strategies and Genera-
tive Adversarial Network (GAN) [91] are unsupervised data 
augmentation methods based on machine learning. GAN is a 
deep learning framework that has aroused interest in the 
field of medical imaging. Considering that the Auto-
augmentation algorithm needs a lot of loss of computing 
resources and search time, the research team proposed an 
improved Randaugment [92] and DADA [93]. However, 
these improved search strategies are still not suitable for the 
medical field due to actualconditions. In the field of skin 
disease image analysis and diagnosis, Shen et al. [94] pro-
posed a low-cost data augmentation strategy for the imple-
mentation of artificial intelligence on mobile devices. The 
proposed strategy included two consecutive stages: augmen-
tation strategy searched in a discrete optimization search 
space and random cropped network search of images. It 
achieved good performance on public datasets at a light-
weight search cost. GAN mainly uses the distribution of 
learning data to randomly generate high-quality pseudo-
imaging data consistent with the distribution of the real da-
taset to overcome the limited dataset [95, 96, 97]. Bissoto et 
al. [98] utilized GAN to generate real synthetic skin cancer 
lesion images, which solved the problem of lack of annota-
tion data. In the public dataset, the distribution of lesion 
images will be severely skewed due to the actual prevalence 
of each category. GAN can be used to generate imaging data 
for underrepresented skin lesion categories or rare skin can-
cer categories [99]. In order to alleviate this problem, Bisla 
et al. [100] designed a skin classification system based on 
GAN to fill rare lesion categories. Combined with the pre-
processing algorithm, the system could produce excellent 
performance that was better than common benchmarks. 
Compared with the classification task, the demand for la-
beled data in the segmentation task is more urgent and more 
difficult to obtain. Gan-generated data can have correspond-
ing pseudo labels at the same time. Pollastri et al. [101] pre-
sented a new strategy that used GANs to increase the data in 
the skin lesion segmentation task, which was the basic first 
step in the automatic detection of melanoma. In the ISIC-
2018 dataset [102], skin lesion images are captured at dif-
ferent magnifications or angles or with different cameras. 
This process is called natural data augmentation. Object 
detection tasks naturally come with detection anchor frames 
of different resolutions. It was worth noting that Goyal et al. 
[103] utilized a deep learning architecture called faster re-

gion-based CNN (Faster R-CNN) to develop an algorithm to 
generate augmentation copies of natural data augmentation 
methods like those used for other skin lesion datasets. For 
more complex clinical images, Ghorbani et al. [104] ex-
plored the possibility of using GAN to synthesize clinical 
images with skin conditions, and the generated images could 
restore skin conditions with high fidelity. The sources of 
clinical images are generally not fixed, which can bring ad-
ditional difficulties to model training. Gu et al. [105] used 
GAN ideas to design a confrontation network, and discussed 
the advantages of uniform conversion of cross-domain data 
styles. The confused enhanced image will lead to overfitting 
of the model in advance and affect the final performance. 
Yang et al. [106] improved the traditional confrontation 
method and added confrontation loss in the image recon-
struction stage to improve the fidelity of the synthesized 
image. The above operations could be expanded to several 
times the total amount of data in the original dataset based 
on the limited amount of data. However, the augmented data 
essentially has a similar distribution to the original image, 
which leads to a limited improvement in the generalization 
performance of the model. The self-attention module can 
avoid excessively similar features to a certain extent. Ab-
delhalim et al. [107] used GAN combined with the self-
attention module to synthesize realistic but completely dif-
ferent skin lesion images from the original images. 

4. LESIONS CLASSIFICATION 

 The diagnosis of skin diseases has always been the first 
step in the treatment of diseases. But even for experienced 
dermatologists, the diagnosis process will be very long. At 
the same time, in the face of diseases with similar visual 
characteristics of skin lesions, experts are also susceptible to 
subjective factors to affect the diagnosis. In view of this, a 
basic task of the CAD system is to realize the recognition 
and diagnosis of the disease focus, that is, the classification 
of the disease focus. In this way, it can solve the limitations 
of high training cost, long diagnosis time, and subjective 
factors in the diagnosis results encountered by doctors in the 
diagnosis process. Among them, various machine learning 
technologies and deep learning models are the mainstream. 
However, clinical images and dermoscopy images contain 
many appearance features of the lesion, which are often 
used as one of the bases for professional doctors to identify 
the lesion. Since the identification of benign and malignant 
melanoma has always been a problem for dermatologists 
around the world, many real medical image datasets are 
publicly available, so it can often become the verification 
object for lesion classification tasks in research. However, 
lesion classification tasks can usually involve more than two 
lesion categories, namely N classification. 
 In the related tasks of skin disease diagnosis, the classi-
fication task is usually used as the last step of the diagnosis 
step. The reason why the review is first proposed in this 
paper is that the network model of the classification task 
will be more concise and easier to understand, and the de-
tection and segmentation task will be more challenging for 
researchers. Based on a retrospective review of classifica-
tion tasks, novices will have more experience in lesion de-
tection and segmentation tasks. 
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4.1. Classification Algorithm Based on Traditional Ma-
chine Learning  

 Traditional skin disease image classification research is 
mainly from the lower level of visual features, such as color, 
texture, shape, etc., to build the descriptors needed by the 
model, to help automatic and rapid diagnosis in the way of 
supervised learning. The model obtained by this method has 
high interpretability and can clearly understand the basis of 
model judgment. However, due to less parameters than deep 
learning model, and the ability of handcrafted feature repre-
sentation is limited. In large-scale data, deep learning model 
is often not as good as deep learning model, so the number 
of related researches has become scarce in recent years.  
 Traditional machine learning classification algorithms 
are mostly used in dermoscopy images, because the de-
scriptors based on dermoscopy images will be less inter-
fered with by environmental noise, and the related models 
will perform better. Since skin lesions do not replace normal 
tissue, but are a way of coexistence, the contrast from RGB 
will not be obvious. Afza et al. [108] utilized the contrast 
linear stretching process to improve the low-contrast situa-
tion at the boundary of the lesion, and proposed entropy to 
optimize the color feature selection. Their future work was 
to use deep learning to automate the feature selection pro-
cess. Mporas et al. [109] calculated the statistical values of 
colors as features, and verified the performance of several 
classification algorithms. The best effect was the AdaBoost 
algorithm with an RF classifier. 
 A single feature sometimes cannot provide all the infor-
mation of the skin lesions. The ABCD criterion, which con-
tains multiple feature evaluation indicators, is frequently 
used in the diagnosis of dermatologists and is a set of rela-
tively reliable evaluation rules. Therefore, it is very promis-
ing to design a model that can automatically find ABCD 
features and draw robust conclusions. Monisha et al. [110] 
developed an automatic model to realize lesion segmenta-
tion according to ABCD rules, Local binary patterns (LBP) 
and Gray Level Co-occurrence Matrix (GLCM), and input 
the result into the Back Propagation (BP) neural network for 
classification. The ABCD rules contain only the intuitive 
features that give more information to the model. Chatterjee 
et al. [111] reconstructed a highly robust expert system for 
benign and malignant identification based on improving the 
traditional ABCD evaluation indicators. Although clinical 
images and dermoscopy images have different meaning 
combinations, they contain the same features of skin dam-
age, such as structure, color, and shape, and can also be used 
for model research. Based on clinical images, Yang et al. 
[112] studied dermatologists’ lesion standards to design 
several visual features that meet the ABCD criteria, and 
obtained clinical image classification effects that are not 
weaker than the CNN model on a small dataset. Considering 
the different emphasis of visual features, Dhivyaa et al. 
[113] adopted an RF classification algorithm based on a 
decision-making tree to achieve high performance at a 
lightweight computational cost. 

4.2. Classification Algorithm Based on Deep Learning 

 Research models based on handcrafted features have a 
common problem, that is, they rely too much on the current 

experimental dataset, so the generalization ability of the 
research model is very insufficient. Therefore, with the rap-
id development of GPUs, CNN with deep feature learning 
capabilities has become the first choice for studying model 
diagnosis effects [15]. The CNN model has the ability of 
end-to-end learning, that is, the model can directly learn 
non-representative features, and sometimes it can get far 
more than artificial features-based visual features. Milton et 
al. [114] compared the disease classification and diagnosis 
systems of five classic CNNs and obtained the best results 
on the public dataset. And proposed a larger dataset and 
better hyperparameters helped to further improve the effect 
of the model. In actual medical tasks, there are some classi-
fication tasks for specific diseases. The performance of dif-
ferent networks varies for different tasks. For example, 
Singhal et al. [115] compared the performance of different 
networks on the seven classification tasks of skin diseases. 
In addition to specific diseases, deep learning can also de-
sign classification tasks for other specific indicators in the 
image. Polevaya et al. [116] utilized a deep learning net-
work to perform four classification tasks on the main mor-
phological parts of the image end-to-end.  
 Deep learning methods will bring explosive growth to 
the demand for data, but data labeling will take up a lot of 
time and calculation costs. Therefore, relevant literature 
research in the field is also dedicated to solving this contra-
diction. Fortunately, data augmentation methods and non-
data generation methods (mainly transfer learning [117]) are 
commonly used to alleviate this problem, which can allow 
deep learning models to achieve satisfactory results in a 
limited amount of data. The method of data augmentation 
has been reviewed in Section 3, such as Qin et al. [118] uti-
lized GAN to generate high-quality lesion images, which 
effectively improved the effect of the classification model. 
 In addition to data enhancement methods based on the 
goal of data generation, a large part of the research literature 
affirms the feasibility of using non-data methods to deal 
with data problems. Transfer learning is to train a model on 
a large-scale dataset (such as ImageNet [119]) and transfer 
its knowledge (weights) to a smaller target dataset. The pre-
trained model is a form of transfer learning. The model pre-
trained on the ImageNet dataset can bring performance im-
provements on different modal data in the field of skin dis-
ease diagnosis. Because there is some general knowledge in 
image-based disease recognition tasks and imagenet data set 
classification. This knowledge can help the model to better 
converge on new tasks. Joanna et al. [120] proposed using a 
pre-trained VGG-19 network for preoperative melanoma 
thickness assessment. Experimental results show that the 
algorithm can achieve the most advanced melanoma thick-
ness prediction results on dermoscopy images. Similarly, 
Hekler et al. [121] utilized a pre-trained ResNet-50 network 
to diagnose moles and melanomas on histopathological im-
ages. A more specialized and more suitable data set would 
be of great benefit to model training. In cooperation with 
related institutions, Xie et al. [20] built a benchmark dataset 
for clinical skin diseases and verified the performance of the 
pre-trained InceptionResNetV2 model, which could achieve 
good generalization on 107,565 skin disease datasets with a 
total of 541 categories. Medical images in the field of skin 
diseases are visually irregular, so the pre-trained models 



Aut
ho

r P
ro

of
s 

“F
or

 P
er

so
na

l U
se

 O
nl

y”

14    Current Medical Imaging, XXXX, Vol. XX, No. XX Li et al. 
based on ImageNet are not applicable. Compared to directly 
initializing the weight parameters trained on ImageNet, Gu 
et al. [105] proposed the concept of progressive transfer 
learning. That was, between ImageNet and the target da-
taset, by using another skin dataset as an intermediate da-
taset to perform a first-step fine-tuning, the effect was far 
better than one-step transfer learning. The deep learning 
model relies heavily on the data set, and the data set trained 
on the original data set is difficult to maintain stable per-
formance on the new data set. In the diagnosis of skin dis-
eases, dermatoscopic images are easier to obtain higher per-
formance than clinical images. In order to improve the gen-
eralization of CNN at the cross-domain level, Brinker et al. 
[123] trained a model based on the dermoscopy image to 
achieve dermatologist-level performance on clinical image 
classification tasks. This model did not need to be trained on 
the clinical image dataset, and successfully constructed a 
simple cross-domain model from diagnostic clinical images. 
 Throughout the existing research literature, classic CNN 
models are often used as benchmark models. However, 
some hyperparameters or modules in these models cannot 
be adapted to all tasks and cannot be universal. In order to 
improve the handcrafted trial-and-error tuning process, 
Kwasigroch et al. [122] presented a neural architecture 
search method to automate this process, and made a lot of 
efforts to reduce the number of parameters. After the model 
training is completed, some network structures are assigned 
very low weights, so deleting these structures can reduce the 
number of parameters without excessively affecting the per-
formance. Based on the existing CNN models, Muckatira et 
al. [124] improved the performance of the original network 
by more than 10% by trimming some of the network param-
eters. Pruning was achieved by resetting the weights below 
the set threshold to zero in the range of the entire model. As 
CNN models were further researched and demonstrated, a 
series of improved CNN models were constructed. The lat-
est advances in deep learning include hole convolution, 
which was known to have higher accuracy under the same 
computational complexity than traditional CNN. Ratul et al. 
[125] compared the transfer of four classic network architec-
tures based on hole convolution. Learning effect, the new 
model had better average accuracy than any known method. 
However, because CNN directly outputs the lesion class, 
such a diagnosis generally lacks interpretability. As it hap-
pens, image retrieval based on interpretable content is ex-
pected to be a supplement to clinical decision-making [126]. 
Allegretti et al. [127] proposed a skin disease image retriev-
al method. After the embedding layer was connected to the 
feature layer, the distance loss was used to evaluate the 
similarity with the target image, which could reach the aver-
age level of prediction of a human-computer battle. 
 The attention mechanism is essential to learn a weight 
for the input feature vector in order to highlight salient fea-
tures and suppress irrelevant features. It has been widely 
used in skin disease classification recently [128]. Barata et 
al. [129] proposed a deep attention model that combined 
CNN and Long Short-Term Memory (LSTM) with an atten-
tion module to help identify relevant areas in skin lesions 
and guide classification decisions. Aimed at the similarity of 
images between classes and the emphasis on the key fea-
tures of skin lesions, Aggarwal et al. [130] presented an 

attention-guided deep CNN to achieve the two classifica-
tions of benign and malignant melanoma. The results 
showed that a careful model could increase the accuracy of a 
normal CNN model by more than 10%. Similarly, Zhang et 
al. [131] also proposed a novel attention module to use the 
features learned in the upper layer to generate the attention 
feature map of the lower layer. 
 Although the accuracy of research literature on authori-
tative datasets continues to hit new highs, the actual task 
requirements will lead to both the early classic VGG and the 
latest ResNeSt [132] in the diagnosis of specific skin diseas-
es. Different deep neural networks have their own biases on 
the learned features. One solution to this problem is to train 
multiple models as feature extractors to learn and evaluate 
different features of skin lesions, and combine the submitted 
predictions to generate the final diagnosis. This method uses 
the ideas of ensemble learning [133] to reduce prediction 
errors. This integrated method usually produces better re-
sults than any single model, and has been applied to the 
classification of skin diseases. Wang et al. [134] tried to use 
the output vectors of five classic CNN models to achieve 
seven classifications of skin lesions. In the experiment, the 
classifier with the best parameters obtained by the Bayesian 
search algorithm was also used to achieve High efficiency 
and accuracy. The method proposed by Mahbod et al. [135] 
was composed of multiple groups of CNNs with different 
architectures focusing on different features, and the ad-
vanced features of multiple neural networks were merged in 
the later stage. Experiments showed that the fused features 
had better and more adequate feature description capabili-
ties. Considering more model structures, Perez et al. [136] 
repeatedly evaluated the classification of melanoma on pub-
lic dataset and found 135 models, and found that no matter 
how they were combined, the integration of multiple models 
had an advantage over a single model. 
 Due to the superiority of the integrated method in im-
proving the performance of the model, people have made 
some new attempts to its combination in specific tasks. 
Some researches try to divide the skin lesion classification 
problem into multiple sub-problems, and divide these sub-
problems into multiple steps to solve them, rather than in 
one step to improve the classification performance. Skin 
conditions can first be divided into benign and malignant 
categories, which has a strong clinical interpretation. In the 
task of skin seven classifications, Harangi et al. [137] intro-
duced the confidence value of the upper level of benign and 
malignant classification as the relevant normalization coef-
ficient. Two classification tasks with higher quality datasets 
can often obtain more accurate confidence values, which 
can improve the category imbalance in the seven classifica-
tions. Thanks to the benefits of multi-stage tasks, more 
manually designed stage tasks are being explored. Barata et 
al. [128] set up a three-stage classification task to help re-
fine the effect of the classification task. Similarly, Hameed 
et al. [138] utilized traditional methods and deep learning 
methods to verify the excellent capabilities of multi-class 
and multi-level classification algorithms on datasets from 
different sources. Furthermore, Mahbod et al. [139] fused 
the feature layer of the model from three stages (cross-
validation, image crop size, and model structure), and had 
excellent classification performance on the public dataset. 
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This integrated method is basically a later fusion of different 
features extracted from different network models. Its suc-
cess has inspired people to perform more hierarchical fea-
ture fusion. Tang et al. [140] proposed to combine the glob-
al and regional features of the image, and integrated four 
different scales of image input to further improve the classi-
fication ability. Different from the integrated learning tech-
nology of voting combination, stacking is another technolo-
gy used to generate the metadata feature space required by 
the task. Stacking is a framework for integrating several 
feature extraction models using a single model. Guided by 
the idea of multi-level classification, Ghalejoogh et al. [141] 
replaced voting modules with stacked modules, and the per-
formance of the model far exceeded the prediction perfor-
mance of a single classifier. Besides, Zhang et al. [19] pre-
sented a collaborative deep learning model in which two 
independent deep CNN models were connected in series to a 
collaborative network to solve the problem of significant 
intra-class differences and inter-class similarity. There were 
many prospective studies that had been proposed. Models of 
different structures can be stacked together to bring different 
dimensions of information to the classification model. 
Among them, Walker et al. [142] claimed in experiments 
that the output after ultrasonication of the image feature 
layer had high sensitivity to lesions. They suggested that the 
model of ultrasound output combined with the classifier 
could evolve into a useful decision support system for all 
doctors to use, and it also brought a lot of inspiration for 
subsequent research. The ability of machine learning tech-
nology to transform input data into high-level representa-
tions has received widespread attention in recent years. Sab-
baghi et al. [143] utilized the bag-of-feature (BOF) model to 
cluster the combination of SIFT features and color features, 
and input them to the stacked sparse autoencoder to com-
plete the skin lesion classification task through an unsuper-
vised scheme. 
 Also, strategy-level methods also provide a great help in 
improving model performance. Most of the existing CNN 
models used in skin disease research use classic loss func-
tions, such as cross-entropy loss functions. For specific skin 
disease tasks, this may limit the model's ability to further 
learn and recognize features from skin disease images. Dif-
ferent dimensions of supervision may be more beneficial to 
model performance in some tasks. In order to solve the 
above problems, Ahmad et al. [144] presented a new 
framework to try to improve the classification of skin dis-
eases based on the triplet loss function and fine-tuning mod-
els. In addition, in response to the dataset problems exposed 
during the training process, Lin et al. [145] described a new 
loss function to improve the interference of imbalanced da-
tasets and difficult-to-separate samples. In the testing and 
training stages of the CNN model, different activation func-
tions have different abilities to solve the non-linear factors 
of the dataset. Therefore, considering the specificity of the 
model in the dataset, Goceri et al. [146] analyzed and com-
pared the clinical image automatic diagnosis effect of the 
two activation functions on the four network models. 
 In addition to improving the training level strategy of the 
loss function, it can also contribute at the preprocessing lev-
el. In order to reduce the cost of cost-effective skin data 
labeling, Shi et al. [147] only used active learning of sample 

selection strategies and further added sample expansion 
strategies to achieve high-level skin lesion analysis. The 
experiment used half of the dataset to achieve the most ad-
vanced performance on two different tasks. Semi-supervised 
learning model can make full use of limited marker data and 
a large amount of original data, which is of great help and 
improvement to medical image analysis tasks. At the same 
time, Bdair et al. [148] proposed a new semi-supervised 
learning model, which was a process of generating pseudo-
labels of unlabeled samples by sharing the knowledge of 
training samples, which was more than 15% higher than the 
baseline. The excellent performance in the existing literature 
had not been widely used, which may be due to the uncer-
tainty of real data, which could easily lead to a lack of con-
fidence in automatic diagnosis or errors in result interpreta-
tion. Designing different tasks on the same data set can fur-
ther utilize the information of the data. Different from the 
previous method, Bagchi et al. [149] made full use of lim-
ited data to improve accuracy. After the diagnosis model, a 
re-identification network was connected in series to confirm 
whether the diagnosis model predicted correctly, and other 
unknown categories of data were used to train the network. 
Combalia et al. [150] utilized Monte Carlo Omission and 
several estimation techniques that could increase the uncer-
tainty of training data to improve the true diagnostic per-
formance of the classifier. 
 At present, many studies have obtained results equiva-
lent to the diagnosis level of doctors based on dermoscopy 
images, but when it comes to clinical images that are easier 
to obtain, it will inevitably bring more severe challenges. 
The research results need to be diagnosed as accurately as 
possible on clinical images before they are implemented in 
the user experience environment. Compared with dermos-
copy images, most studies based on clinical images are col-
lected by the research team itself, so the image quality is 
different and the difficulty is relatively high. Jinnai et al. 
[151] trained a Faster R-CNN model on a dataset of 3,551 
patient clinical images, and obtained a diagnostic effect that 
was not lost to dermatologists. One of the important signifi-
cances of clinical image research is its application in hard-
ware platform to achieve the popularization of auxiliary 
diagnosis. Khamparia et al. [152] provided a novel, IoT-
driven deep learning framework for melanoma classification 
in skin disease images, which could be used remotely to 
assist medical experts in the diagnosis and treatment of skin 
cancer. Integrating algorithms into mobile devices could 
also bring artificial intelligence technology to more people 
who need it. Hameed et al. [153] proposed a movable skin 
damage classification expert system application. The system 
could quickly realize the four classifications of skin types in 
clinical images, which not only facilitated patient self-
examination, but also simplified the preliminary diagnosis 
steps of professional physicians to a greater extent, so that 
experts could focus more on a detailed diagnosis of difficult 
diseases. However, when the model was tested on multiple 
smartphone images taken by different cameras under differ-
ent lighting conditions and distances, it was difficult to 
achieve the same diagnostic accuracy. For example, the self-
acquired skin disease images provided by patients were usu-
ally of low quality and were not suitable for auxiliary diag-
nosis [154, 155]. 
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 After people further studied the performance improve-
ment factors of the diagnostic network model, a conclusion 
was reached: the dataset determines the upper and lower 
limits of the performance of the diagnostic model to the 
greatest extent. As mentioned above, researchers have paid 
attention to the size and source of experimental datasets. 
Here, the characteristics and fusion of multiple data types 
will be described. Dermoscopy images can show the stand-
ardized field of view of blood vessels, dots and balls on the 
lower surface of the lesion to provide texture features. Clin-
ical images describe the geometry and color of lesions, 
which are not so standardized in comparison. It supports 
more relaxed shooting in different fields of view, but always 
contains some image artifacts. In addition to image data, the 
patient's metadata includes other types of information, such 
as the patient's gender and lesion location. Together, these 
methods can provide a standard form to describe skin dam-
age, which is the best aid in the actual diagnosis process. 
Feature fusion methods (such as early fusion and later fu-
sion) have also been widely discussed. Among the few pub-
lished skin disease diagnosis papers based on multi-
modality, these methods are based on post-fusion methods 
to integrate image modal features extracted by multiple in-
dependent networks. In the future, it is expected to be ex-
tended to more anatomically significant prior knowledge to 
help segmentation of medical images. Ge Z et al. [156] 
adopted deep CNN as the benchmark model to build a new 
Triple-Net, which consisted of two single-mode models and 
a cross model. The advantages of multi-modal data input 
were verified in three different feature fusion methods. On 
the cross-modal dataset, the effect was far better than that of 
the single-modal model. The authors concluded that com-
bining Class activation map and Bilinear Pooling methods 
could capture complementary feature information from 
cross-modal data. But there could be more adaptations in the 
hyperparameter selection of Triple-Net's loss fusion. Clini-
cal diagnosis of skin diseases will generate a lot of text data, 
which will be helpful for doctors to make diagnostic deci-
sions. Kawahara et al. [157] proposed an integrated neural 
network designed for multimodal datasets of dermoscopy 

images, clinical images, and metadata. It classified skin 
damage diagnosis according to the criteria of all seven-point 
checklists in a multi-task model. At the end of the article, 
the visualized corresponding area of the modal was realized 
to enhance the interpretability. The stage of model fusion is 
different in different tasks or different types of data, and the 
design of this part in general studies depends on experience. 
Nunnari et al. [158] explored the effects of two different 
multimodal fusion methods. The author confirmed that shal-
low network fusion could avoid the masking of metadata 
input and achieve better classification results. The CNN 
architecture proposed by Yap et al. [159] accepted simulta-
neous input of dermoscopy images, clinical images, and 
patient metadata (including patient age, gender, and lesion 
location). They proved through experiments that the multi-
modal method was better than the single-modal method in 
the five types of skin tumor classification and the binary 
classification of melanoma. However, it was discussed in 
the experiment that the patient's metadata did not seem to be 
able to achieve the expected improvement effect. Future 
research would explore clinical information with more di-
rect diagnostic significance. Similarly, in a recent study, 
Pacheco et al. [160] combined dermoscopy images and pa-
tient clinical information in a deep learning model, achiev-
ing an improvement of about 7% in average prediction accu-
racy. At the same time, it is concluded that clinical infor-
mation was not helpful for the classification of all lesion 
types. In the future, this work will focus on more image mo-
dalities. Different from the later fusion method, some people 
believe that the multi-modal image features from each level 
of the CNN structure will help the classification of multiple 
types of skin lesions. For example, high-level features focus 
on the classification of lesions, while low-level features 
have an advantage in predicting the area of skin lesions. Bi 
et al. [161] introduced a deep hyperconnected CNN with 
multi-scale attention blocks to integrate the visual character-
istics of clinical and dermoscopy lesion images. 
 In order to facilitate reference to the current literature on 
the classification of skin lesions, we list Table 2 below by 
year. 

 
Table 2. Reference for classification method of skin lesions. 

Refs. Year Dataset (Category) Model & Method Remarks  

[196] 2016 814 images (2) BOF + Encoders Rriplet loss function and fine-tuning models 

[198] 2017 MoleMap (15) VGG-16 Dermoscopy, clinical images, and metadata; integrated neural network 

[112] 2018 SD-198 SVM Designing several visual features which meet the ABCD criteria 

[158] 2018 ISIC 2016 ResNet-50 Ultrasonication of the image feature layer 

[160] 2018 1,011 cases (5) Inception V3 Multimodal fusion methods 

[166] 2018 2,917 cases (5) ResNet-50 Combining dermoscopy images and patient clinical information  

[110] 2019 \ ANN + BP Multiple feature evaluation indicators 

[114] 2019 ISIC 2018 PNASNet-5-Large Comparing the five classic CNNs 

[116] 2019 \ (4) VGG-16 End-to-end network on the main morphological parts of the image  

[123] 2019 HAM10,000 ResNet50 Basing on the public dermoscopy image 

Table (2) contd…. 
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Refs. Year Dataset (Category) Model & Method Remarks  

[120] 2019 \ (3) VGG-19 A pre-trained VGG-19 network 

[121] 2019 595 images (2) ResNet-50 Pre-trained ResNet-50 network 

[20] 2019 107,565 images (541) InceptionResNetV2 Pre-trained InceptionResNetV2 model 

[105] 2019 MoleMap + HAM10,000 Cycle-GAN Progressive transfer learning 

[129] 2019 ISIC 2017, 2018 
LSTM+DenseNet-

161+ResNet Inception 
Deep attention model which combined CNN and LSTM with attention 

module 

[130] 2019 HAM10,000 InceptionV3 + Attention An attention-guided deep CNN 

[131] 2019 ISIC 2017 ResNet-50+ Attention Using the features learned in the upper layer  

[135] 2019 ISIC 2017 4 CNNs Advanced features of multiple neural networks merged in the later stage 

[136] 2019 ISIC 2017 9 CNNs The integration of multiple models 

[147] 2019 3,954 images (2) Inception V2 Utilizing the BOF model to cluster the combination of SIFT features 

[148] 2019 100 images (5) ResNet Activating learning of sample selection strategies 

[149] 2019 ISIC 2017 ResNet-101 Semi-supervised learning by sharing the knowledge of training samples 

[154] 2019 1,856 images (4) SqueezeNet IoT-driven deep learning framework 

[108] 2020 ISIC 2017 SVM 
Contrasting linear stretching process and optimize the color feature  

selection 

[109] 2020 HAM10,000 AdaBoost Calculated the statistical values of colors as features 

[113] 2020 ISIC 2017 + HAM10,000 DT + RF A RF classification algorithm based on DT 

[115] 2020 HAM10,000 Inception ResNet v2 Transfering learning models 

[118] 2020 ISIC 2018 ResNet-50 + GAN Utilizing GAN to generate high-quality lesion images 

[122] 2020 ISIC 2019 VGG Neural architecture search method to automate trial-and-error tuning 

[124] 2020 ISIC 2019 ResNet-18 Trimming some of the CNN parameters 

[125] 2020 HAM10,000 InceptionV3 Transfer of network architectures based on hole convolution 

[127] 2020 ISIC 2019 (retrieval) ResNet-50 Skin Lesion Diagnosis 

[134] 2020 ISIC 2018 SE-Resnext-101 Machine Learning 

[137] 2020 ISIC 2018 Inception-v3 Multi-class classification considering a binary classification support 

[139] 2020 3,672 images (4) AlexNet 
Using the feature layer of the model from cross-validation, image crop 

size, and model structure 

[140] 2020 ISIC 2018 3 CNNs Combining the global and regional features 

[141] 2020 ISIC 2017 Xception Replacing voting modules with stacked modules 

[145] 2020 PH2, Ganster 4 Classifiers Two independent deep CNN models were connected in series 

[150] 2020 6,144 images (5) 
ResNet-152 + Inception-

ResNet-V2 
Focal loss for dense object detection 

[151] 2020 ISIC 2019 3 CNNs Monte Carlo Omission and several estimation techniques 

[152] 2020 ISIC 2019 EfficientNet-B0 Faster R-CNN 

[159] 2020 4,732 images (2) Faster R-CNN Movable skin damage classification expert system 

[161] 2020 ISIC 2019 ResNet-50 CNN 

[162] 2020 1,612 images (6) 6 CNNs Deep hyperconnected CNN with multi-scale attention blocks 

[163] 2020 1,011 cases (5) ResNet The accurate segmentation of the image 

[111] 2021 
ISIC 2016, 2017, 2018, 

PH2 
ABCD rules 

Expert system for benign and malignant identification 

[138] 2021 ISIC 2018 DenseNet-161 Multi-class and multi-level classification algorithms 

[150] 2021 38,000 images (>10) EffecientNet Meta-ensemble technique 
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5. LESION SEGMENTATION 

 Skin damage in dermoscopy images and clinical images 
is a single bounded area, which is usually distinguished 
from normal surrounding skin due to different colors or tex-
tures. This area is an area of interest that needs further pro-
cessing in skin disease diagnosis tasks [162]. Lesion seg-
mentation is to separate the focus area of research interest 
from the background, which helps clinicians perceive the 
boundary of the lesion. At the same time, the accurate seg-
mentation of the image can provide a region of interest for 
the later clinical feature segmentation, so the success of im-
age analysis depends on the reliability of the segmentation 
[163]. Although lesion segmentation is sometimes used to 
improve several downstream tasks, such as lesion classifica-
tion, it itself is largely understood as an important and chal-
lenging task. 
 Handcrafted boundary detection mainly considers the 
obvious visual difference between the lesion area and 
healthy skin, but more than one type of damage is more of-
ten similar. Therefore, a higher level of knowledge of lesion 
characteristics should be considered [52]. However, the 
handcrafted boundary detection method not only has a low 
misdiagnosis rate, but also the doctor's operation is not easy 
to replicate, and the scope of application is bound to be lim-
ited. The segmentation algorithm design of skin disease im-
ages has quickly attracted the attention of scholars. Lesion 
segmentation becomes difficult due to the presence of low 
contrast, irregularities, rough boundaries and different artifi-
cial factors [164, 165], which have been mentioned in sec-
tion 3. Generally, before inputting the image into the seg-
mentation algorithm, effective image preprocessing should 
be used to eliminate the influence of these factors [166]. 

5.1. Lesion Boundary Detection 

 In the actual clinical diagnosis environment, boundary 
labeling is performed handcrafted by doctors. This is a tedi-
ous step, and its results are easily affected by the subjective 
nature of the doctor, which will affect the final clinical re-
sults. Therefore, a necessary task of computer-aided diagno-
sis is the boundary detection of lesions, which is also used 
as a preprocessing step in many literatures. Automatic de-
tection of skin damage boundary can bring better segmenta-
tion effect of skin slice image, effectively increase the effi-
ciency of skin damage recognition, and help health care 
providers take care of patients in a better way. 
 Ideally, there is a smooth transition between the lesion 
and the surrounding normal area, and the boundary is a 
group of continuous pixels in the smooth transition. The 
basic idea of boundary detection is to find the position 
where the intensity changes rapidly in the image, usually 
where the first derivative is greater than the specified 
threshold or where the second derivative crosses the zero 
point [167]. 
 Traditional boundary detection techniques are usually 
based on threshold, clustering, region growth and so on. 
However, due to the low contrast between the surrounding 
skin and the lesion, the blurring of the lesion boundary, arti-
ficial artifacts such as hair, and color changes inside the 

lesion, it is a challenge to automatically detect this bounda-
ry. Ali et al. [168] proposed a new edge-extracted approach 
for skin lesion boundary detection. This method could detect 
the main boundary around skin lesions and be robust to arti-
facts presented in the image. This had good applicability in 
the preprocessing step of the lesion segmentation task. 
However, experiments showed that this method lacked the 
ability to detect the fine structure of the skin lesion bounda-
ry. The hyperparameters introduced by traditional image 
processing techniques hinder irregular contour detection. 
Jayalakshmi et al. [169] utilized a median filter to remove 
artifacts and proposed an improved K-means clustering 
method. It was verified on the public Danderm database that 
the clustering algorithm performed well in detecting lesion 
boundaries and was suitable for preprocessing of dermosco-
py images. Contour refinement is a difficult task in lesion 
edge detection. Complex lesions may hinder the refinement 
performance of the model. After preprocessing to improve 
the image quality of skin lesions, Sengupta et al. [170] uti-
lized an ant colony optimization algorithm to improve the 
boundary contours of skin lesion images processed by con-
ventional boundary detection methods. The introduction of 
this method improved the efficiency of conventional bound-
ary detection methods in skin lesion images. The comple-
mentarity of models and strategies enables the combinatorial 
optimization between them to deal with more complex focal 
areas. Abbas et al. [171] tried to combine different methods 
to improve segmentation performance, among which the 
combination of bilateral filter, polynomial model and Canny 
boundary detector could achieve the best average accuracy. 
Bayraktar et al. [172] used a new local boundary extraction 
method and probability map to overcome the problem of 
boundary blur in active contours, and the effect on dermos-
copy images was not inferior to the latest methods. 
Abeysinghe et al. [173] proposed two new methods (dis-
tance difference method and gradient method) with different 
ideas from existing methods to detect border irregularities, 
thereby making medical image detection easier. 
 In the study of clinical image data, due to the unlimited 
shooting distance, a single image sometimes contains multi-
ple lesion areas and a large area of skin. Compared with 
normal skin, the skin lesion area is sometimes very small in 
the image, so a certain lesion area detection is needed. The 
image data available for training specific diseases is general-
ly insufficient. Therefore, Han et al. [174] adopted the R-
CNN model to detect all small lesions from a limited num-
ber of large-size images, thereby solving the problem of 
insufficient clinical image datasets. Furthermore, the use of 
neural networks to predict the irregularity of the skin lesion 
boundary has also become an additional application of 
boundary detection. Ali et al. [175] proposed a method for 
determining whether the boundaries of skin lesions were 
irregular. The surface irregularity of the skin lesion detected 
by It was used as the input of CNN, and Gaussian Naive 
Bayes was used to detect the irregularity of the boundary 
objectively and automatically. In addition, Ali et al. [176] 
also designed a new fuzzy multilayer perceptron and corre-
sponding activation function. The proposed method general-
ly outperformed most of the latest standard neural network 
classification methods. 
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5.2. Semantic Segmentation 

 The semantic segmentation task is also the basic task of 
computer vision, which is essentially to classify every pixel 
in the image at the semantic level, and the result will have 
strong real semantic interpretability. At present, medical 
image segmentation is one of the main fields involving se-
mantic segmentation tasks. Semantic segmentation, com-
pared to classification task, there are a lot more challenging 
problems: Firstly, the classification task only requires that 
level of output image category, and the output of the seman-
tic segmentation task not only needs to include the category, 
the pixel location information also need not precise output, 
whether wrong category or wrong location information can 
lead to bad model performance; Secondly, the semantic 
segmentation task involves the output of every pixel in the 
image, no matter in the training stage or the testing stage. 
Compared with the classification task, which contains only 
one image-level output, it undoubtedly carries heavy com-
putational cost. Finally, context information plays an im-
portant role in segmentation task. Most classification net-
works reduce feature dimension to obtain accurate model 
effect, but it often leads to irreversible information loss. 
 The goal of semantic segmentation task is to segment the 
fine structure under the large background, which has im-
portant research significance in the application of computer-
aided diagnosis systems. In recent years, semantic segmen-
tation in medical context has been widely studied, such as 
multi-target labeling based on the living microscope. When 
a dermatologist analyzes the histopathological features of 
the skin, individual histopathological features of the skin are 
associated only with certain local areas in the image. How-
ever, medical images often have extremely complex, noisy 
structures. For example, there may be multiple histopatho-
logical features. At this point, if there is a method to divide 
the image into multiple regions and extract each region 
structurally, it can lay a good diagnostic environment for 
deeper disease classification. 
 When a dermatologist analyzes the histopathological 
features of the skin, a single histopathological feature of the 
skin is only related to certain local areas in the image, and 
the image may have multiple histopathological features. At 
this time, it is necessary to divide an image into multiple 
regions, and perform feature extraction on each region, to 
lay a good diagnosis environment for deeper disease classi-
fication. RCM images are very different from other images 
in imaging principle, Zhang et al. [177] demonstrated a fea-
ture representation method for skin biopsy tissue pathologi-
cal image annotation based on deep learning. Bozkurt et al. 
[178] described a new multi-resolution convolutional net-
work structure and used it to annotate human bodies. Mor-
phological patterns in skin RCM images. Goyal et al. [179] 
proposed a multi-class segmentation method based on FCN 
to segment dermoscopy images of benign moles, melanoma, 
and seborrheic keratosis. However, based on dermoscopy 
images and clinical images, it is often necessary to complete 
the task of segmentation of skin lesions and background. On 
the high-resolution clinical images of multi-focal areas, Liu 
et al. [180] focused on the four types of segmentation prob-
lems of cutaneous T-cell lymphoma (CTCL) and similar 
diseases. A novel multi-knowledge learning network was 

proposed to solve this problem, which achieved very good 
performance and met clinical needs. 
 In addition to deep learning methods can achieve multi-
class segmentation tasks of diseases, some non-deep learn-
ing algorithms can also solve part of semantic segmentation 
problems [181]. In an automatic framework, dictionary 
learning [182] and graph-cut [183] are combined to achieve 
a high level of multi-class segmentation performance. By 
constructing the image input dictionary and updating the 
corresponding label dictionary, the feature data set with op-
timal value is obtained. Finally, the graph-cut method with 
label cost is used to obtain better results than the most ad-
vanced methods. 
 However, when a deep learning model is used for end-
to-end training, although excellent performance can be ob-
tained, the abstract features are not interpretable at all, 
which will greatly hinder the application of model algo-
rithm. Thomas et al. [184] provide a new deep learning 
model interpretability method, which uses a semantic seg-
mentation model to segment multiple types of pathological 
structures based on histopathological maps of common skin 
cancer types. It should be noted that the semantically seg-
mented categories correspond to the high-level concepts in 
human cognition, providing an interpretable clinical applica-
tion mode for the future computer-aided diagnosis system. 

5.3. Segmentation Algorithm Based on Traditional Ma-
chine Learning 

 The handcrafted features of machine learning include 
color features, texture features, and shape features. Combin-
ing these handcrafted features, threshold [185], region 
[186], and morphology [187, 188], these methods have been 
studied to prove that they can provide better for specific 
tasks. The result of the diagnosis. Patiño et al. [189] used 
the SLIC algorithm to segment the image and combined the 
average RGB colors of superpixels to effectively deal with 
hair removal, oil bubbles, light changes, and reflection im-
ages. In order to reduce the impact of low-contrast bounda-
ries on clinical image segmentation, Filali et al. [190] start-
ed from the image super-pixel level and used simple linear 
iterative clustering (SLIC) and image propagation for con-
trast refinement, surpassing some of the most advanced 
method on the two datasets. However, the disadvantage of 
the method based on color space and threshold is that it can 
only process color-based features with the same size, has a 
high dependency on the threshold, and lacks generalization 
ability. Devi et al. [191] proposed automatic cluster selec-
tion using Fuzzy C-means based on histogram attributes. 
The system segmented melanoma from non-dermoscopy 
images of normal skin. Salih et al. [187] used random re-
gion fusion combined with a pixel-based Markov random 
field model to achieve skin lesion segmentation. 
 In addition, the method based on texture analysis can 
effectively analyze all texture features. Peruch et al. [192] 
utilized Markov random fields (MRF) and principal compo-
nent analysis (PCA) to obtain good results. Ma et al. [193] 
went beyond the limitations of traditional directions and 
used deformable models for model segmentation of curve 
evolution. Pereira et al. [194] used LBP and gradient-based 
histogram thresholding (GHT) methods to extract features, 
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and utilized SVM to get good segmentation results. Hasan et 
al. [195] proposed a new Segmentation-based Fractal Tex-
ture Analysis (SFTA) method for texture feature extraction. 
This method combined a hybrid multi-level threshold algo-
rithm to select the optimal threshold number, which was 2% 
more accurate than the traditional Otsu threshold-based 
SFTA. 
 Researchers focus on dermoscopy images, and introduce 
local and global features based on handcrafted features. 
Slowly some researchers began to think about whether 
combining a single method could bring better segmentation 
results. Priyadarsan et al. [196] used the combination of 
local variance and global threshold segmentation method 
had obtained higher accuracy than existing segmentation 
methods. Global features bring new information to the mod-
el, and feature information of different dimensions brings 
information to the model correlation. Ruela et al. [197] sug-
gested that global and local features were based on two 
types of fusion (early and late fusion) technology. Nasir et 
al. [198] proposed a hybrid method that extracts HOG 
(shape), color, and texture features and used the additive law 
of probability to achieve the best results on the PH2 dataset. 
Asaeikheybari et al. [199] designed a Multiple Random 
Walker segmentation algorithm and compared it with three 
CNNs used for segmentation to verify the diagnostic effect 
of the Multiple Random Walker algorithm structure in the 
case of limited datasets. 
 Spectral analysis of histopathology brings positive en-
lightenment to skin tumor representation. McIntosh et al. 
[200] considered the fact that infrared light was absorbed by 
a variety of skin components, and studied the application of 
infrared spectroscopy in the characterization of basal cell 
carcinoma specimens in vitro. Furthermore, linear discrimi-
nant analysis (LDA) was used to analyze the near-infrared 
absorption spectra for the non-invasive in vivo characteriza-
tion of skin tumors [201]. 

5.4. Segmentation Algorithm Based on Deep Learning  

 In order to reduce the misjudgment rate of the algorithm, 
it is often necessary to learn the features that maximize. In 
the research process of several machine learning algorithms 
based on artificial features, the existing methods still cannot 
fully learn the effective features for diagnosis, nor can they 
detect the precise division of the boundary area. Although 
the deep learning model is very complex, it can learn deep 
heterogeneous features from the original image, and can 
express different levels of information from traditional 
handcrafted features. Among them, CNNs have excellent 
effects in the field of image processing, especially medical 
images. 
 Skin lesion image segmentation is a difficult task in 
computer vision. Deep learning techniques, especially con-
volutional neural networks, have achieved great success in 
this regard [65, 75, 89, 202-204]. Researchers have pro-
posed various models based on deep learning. Some struc-
tures including U-Net, Fully Convolutional Network (FCN), 
Fully Convolutional Residual Network (FCRN), Convolu-
tional Deconvolutional Neural Network (CDCNN) and 
GAN) have all produced skin lesion segmentation Excellent 
performance. FCN is integrated by the convolutional layer 

and the pooling layer, and is one of the first models pro-
posed for segmentation. Kaymak et al. [205] compared the 
effects of four different FCN architectures on the public 
dataset. However, the FCN model has the possibility of 
over-segmentation, which may cause the segmentation ef-
fect to not reach refinement [206]. The U-Net architecture is 
developed from FCN. It is an encoder-decoder network, 
where the encoder and decoder parts are connected by 
shortcut skip. But its weakness is that it will cause loss of 
information during short skip, resulting in incomplete inclu-
sion of image features in the decoding process. Considering 
the excellent performance of ResNet [207] and DenseNet 
[208] in image classification tasks, people combined the 
idea of residual blocks or dense blocks into the existing im-
age segmentation architecture, and designed related models 
[209]. The more common one is FCRN. But running FCRN-
based architecture requires a lot of computing resources, 
which may limit the use of the architecture in actual scenar-
ios. The architecture of CDCNN is composed of convolu-
tion and deconvolution networks. The deconvolution layer 
is used to smooth the segmentation image in order to obtain 
the final high-resolution output. However, the implementa-
tion of this architecture also requires high computational 
costs. Thanks to the great success of GANs [95] in image 
generation tasks, the idea of adversarial training has been 
used by people to construct effective lesion segmentation 
networks, and gratifying results have been achieved [204, 
210-214]. 
 The model of the segmentation task includes down-
sampling and up-sampling parts, where the down-sampling 
part essentially obtains a feature extractor. Therefore, for a 
very limited number of medical images, the segmentation 
task is often initialized with the pre-trained parameters of 
the classification model and fine-tuned. Tschandl et al. 
[215] trained VGG and ResNet classification networks on 
public datasets, and then transferred the corresponding lay-
ers as encoders to the LinkNet model [216] and fine-tune 
them. Compared with the randomly initialized network, a 
model with fine-tuned weights achieved a higher Jaccard 
index at public dataset. Soudani et al. [217] used two pre-
trained networks and then considered building a five-node 
classifier to predict the most suitable segmentation tech-
nique. Phillips et al. [218] proposed the idea of prepro-
cessing multiple pre-trained networks on the PascalVOC 
[219] segmentation dataset and fine-tuning in multiple steps 
on the entire training set image. This model achieved the 
effect of handcrafted fine segmentation. The weights of the 
existing pre-trained networks were all trained on ImageNet 
or PascalVOC, but the visual features of the images in these 
datasets were more shapes, which were not applicable under 
the irregular conditions in the field of skin diseases. In order 
to solve the induced feature deviation of the pre-trained da-
taset, Canalini et al. [220] explored three pre-trained strate-
gies based on the segmented structure to initialize the fea-
ture extractor, but different pre-trained networks focused on 
different Features, thereby greatly improving the effective-
ness of the integration. The detection task model can be 
roughly divided into one-stage method and two-stage meth-
od, and the combination results of different methods can 
improve the model performance. This is because different 
models approximate the final model results through differ-
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ent principles and mechanisms, and the appropriate result 
combination strategy can produce synergies between mod-
els. Bagheri et al. [221] verified that the two-stage combina-
tion strategy could more effectively combine the output of 
Mask R-CNN and Retina-Deeplab model. The specific ap-
proach is to first do post-processing to the output of the two 
models to get the segmentation result, and then do post-
processing to the segmentation result to get the final more 
accurate segmentation model. Hasan et al. [222] enhanced 
the result of lesion identification by integrating multiple 
convolutional neural network feature extractor modules. 
Finally, an automated dermoscopy image diagnosis Web 
application was designed and validated on an ISIC dataset. 
Xiao et al. [223] designed a few-shot learning method for 
the lesion segmentation task, considering the high cost of 
obtaining tags for the lesion segmentation task. Symmetric 
networks were proposed to perform repeated training net-
works for the same set of data under the premise that most 
of the background was removed by using the common re-
gions of the support set and validation set data. The evalua-
tion results on open data sets show that few-shot learning 
networks based on a small amount of annotated data have 
good prospects. Facing the same situation, Jin team [224] 
obtained time-saving automatic weak labeling of data by 
using the threshold method, which can obtain a large num-
ber of weak labeling data in a limited time. Through exper-
imental verification, weak labels of automatically generated 
data can be used for supervised training of deep learning, 
and obtain 78% accuracy. Some unsupervised segmentation 
algorithms were designed to save a lot of data labeling costs 
and label bias. Messadi et al. [225] constructed an unsuper-
vised segmentation algorithm for lesions, which reduced 6% 
compared with Growcut and Mean Shift under the edge er-
ror index. 
 Compared with traditional machine learning, deep learn-
ing models can learn more comprehensive and deep data 
features, and may achieve better results on certain tasks. Lin 
et al. [226] compared U-Net and C-means methods on the 
task of skin lesion segmentation, and the results showed that 
compared with clustering methods, U-Net method had obvi-
ous advantages. The preprocessing process of dermatologi-
cal images is very challenging, and the combination of deep 
learning and traditional machine learning methods some-
times fits well. Traditional machine learning algorithms 
show good performance in dataset preprocessing, and can be 
used as a good auxiliary method for deep learning before 
final segmentation. Huang et al. [227] used K-means clus-
tering and improved Mask R-CNN to achieve good segmen-
tation results in segmenting skin lesions, and solved the 
problem of fuzzy boundaries and complex textures. Mor-
phological algorithms can deal with artificial artifacts better 
because of their excellent adaptability. Justin et al. [228] 
used morphology-based hat transformation to preprocess the 
image, and then adopted DeeplabV3+ to achieve efficient 
lesion segmentation. Zafar et al. [229] used a hair removal 
algorithm to preprocess the image, and achieved an effect 
that was not inferior to the advanced level on the improved 
U-Net. Li's team [230] designed a new idea for hair prepro-
cessing, which is based on U-Net deep learning model to 
evaluate the hair removal effect of a single image, and 
achieved better results than other advanced algorithms on 

the ISIC2018 dataset. Ramya et al. [231] preprocessing im-
ages of skin lesions based on discrete wavelet decomposi-
tion of different color components, and obtained clear seg-
mentation masks of lesion regions by threshold method after 
processing the complexity of images. The complexity of the 
lesions is significantly different from normal skin color, but 
is often limited by the Angle of shooting and the influence 
of light in the study. Dastane et al. [232] used two-stage 
pixel neighborhood technology to realize discrimination. 
Specifically, the classification recognition probability of 
each pixel is obtained by using the deep learning model, and 
then the original skin color information is better utilized by 
combining the auxiliary information of pixel probability in 
the neighborhood. The Filali team [233] used a graph-
weighting method to control the relative weight of feature 
areas near the edges so that the model could more easily 
adapt to light noise in the macro image. Compared with oth-
er segmentation methods, the result of this method is more 
accurate and faster. In contrast, compared with CNN's con-
volutional operation, which constantly sacrifices image 
resolution to increase local receptive fields, some machine 
learning strategies are more advantageous in the refinement 
requirements of segmentation results. Adegun et al. [234] 
adopted CNN as the initial segmentation method of the le-
sion, and then performed boundary fine segmentation with 
the watershed algorithm. In order to build the number of 
parameters of the model and extract relevant features, Xu et 
al. [235] optimized CNN by satin bowerbird optimization 
(SBO). This algorithm always aims to find a parameter 
combination optimization. Similarly, the World Cup Opti-
mization algorithm and Imperialist Competitive Algorithm 
were used to refine the boundary of lesions [236, 237]Ünver 
et al. [75] combined the YOLO model to locate the lesion to 
refine the segmentation effect of the GrabCut segmentation 
algorithm, which greatly improved the evaluation index of 
the original algorithm. Adegun et al. [238] used a probabil-
istic model based on conditional random fields to refine the 
boundary of the output results of the FCN model. The sys-
tem uses a lightweight design and achieves better perfor-
mance on two open data sets. Qiu et al. [239] maximized the 
label consistency between similar pixels through condition 
random field (CRF), to achieve the goal of refinement and 
coarsening of the pixel prediction of multiple deep CNN 
models to generate fine-grained segmentation. Neural net-
works usually consider resizing the original image to save 
computational cost, but the behavior of reducing the resolu-
tion may cause information loss. Masni et al. [89] developed 
a skin lesion segmentation method through a deep full-
resolution convolutional network (FrCN). This method 
could accept the original resolution of the input image with-
out pre-processing or post-processing resize operation trans-
formation. Sometimes the segmentation task of melanoma 
based on deep learning features cannot achieve high accura-
cy, and the output abstract features are easily misled by false 
features. Khan et al. [240] extracted depth features and 
combined an improved moth Flame optimization algorithm 
to remove irrelevant and redundant depth features, achieving 
significant improvement results. 
 Based on the infrastructure proposed in the existing re-
search literature, many studies modify existing networks 
and expand them to be more suitable for specific tasks. Shan 
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et al. [241] referred to the DPN network structure to im-
prove the block structure in FC-DenseNet, and set up com-
parison experiments with three different segmentation mod-
els. The global context can correctly guide the performance 
of the model, thus correcting the wrong learning direction of 
the model in time. U-Net has great advantages over other 
segmentation models in combining context information. 
Therefore, Jiang et al. [242] added a consistency monitoring 
module of global context before sampling input on U-Net, 
which has better performance than the current best methods. 
Common splicing operations in the U-Net model will un-
doubtedly lose some context information. Qamar team [243] 
designed a dense jump module, which uses the jump idea of 
dense network and different expansion rates of pyramid 
pooling [244] to capture global context information. The 
model based on this module has achieved the most advanced 
performance. The results showed that the improved model 
maintained a tradeoff between model complexity and over-
all performance. The attention module has been widely used 
in recent research due to its excellent performance. People 
combine the attention module into the existing image seg-
mentation architecture to design an effective deep network 
for skin lesion segmentation. Xie et al. [245] designed a 
high-resolution attention function block with three branches. 
By fusing spatial attention and channel branch output, ro-
bust features with detailed spatial information could be ex-
tracted. In this way, proposed method could obtain accurate 
skin lesions boundary. Sarker et al. [246] combined the 
lightweight GAN model with the position and channel atten-
tion module. In the case of reducing the amount of model 
parameters, considerable performance was still obtained on 
the public dataset. Similarly, Jiang et al. [247] proposed a 
CSARM module, which combined residual learning, chan-
nel attention mechanism and spatial attention mechanism to 
improve the discrimination and representation capabilities 
of CNN, and compared other attention modules on the pub-
lic dataset, such as SE Block and FPA. Tao et al. [248] con-
structed a channel attention module that can capture multi-
scale features to improve the performance of the model on 
the open dataset HAM10000. Tong et al. [249] added three 
different forms of attention mechanism to the classic U-Net 
model: channel attention, spatial attention and contextual 
attention controlled by the gate. The experiment proves that 
such attention modules can indeed bring more relevant visu-
al attention to the target the network. Arora et al. [250] pro-
posed an attentional gate to capture high-dimensional fea-
tures from low-dimensional irrelevant features in the skin 
segmentation task, and evaluated it on ISIC2018 dataset. As 
attention modules are more frequently used in deep learning 
models, Ren et al. [251] 's work involves the effects of dif-
ferent combinations of different types of attention modules. 
The research object is the channel attention module and the 
spatial attention module, the main research combination is 
the number, sequence and combination mode. This study 
verified that the serial combination of channel attention and 
spatial attention was more conducive to the aggregation of 
global and local information in the segmentation task, and 
finally achieved an average Jaccard index of 0.7692 on the 
ISIC2017 dataset. 
 Different information features in medical images may all 
play important roles in specific tasks. In addition, the same 

feature in different tasks will also be emphasized due to 
actual index requirements. In deep learning segmentation 
models, deep feature maps are often used as input for up-
sampling. Unlike deep features, which are generally abstract 
features, shallow features are more inclined to color, shape, 
and location. Therefore, the literature is often willing to 
combine low-level handcrafted features, hoping to provide 
guidance for diagnosis from an explanatory perspective. 
Color and texture features are the most important attributes 
of dermoscopy images, and these are one of the important 
features used to identify skin diseases [253]. Although 
handcrafted features usually lack generalization ability, they 
show poor performance compared with deep neural network 
features learned directly from large amounts of data. How-
ever, they can sometimes achieve excellent performance in 
certain dermatological diagnosis tasks, which can be used as 
a supplement to deep features. Researchers began to com-
bine handcrafted features on the original neural network 
structure to improve the performance and interpretability of 
the model. The deep features extracted by deep learning 
models are always lack of reasonable interpretability, which 
will be seriously questioned in the actual implementation of 
medical models and is not conducive to the study of medical 
symptoms. Reasonable feature selection methods can extract 
the depth features related to disease categories, so as to pro-
vide some suggestions for practical medical research signif-
icance. Kaya et al. [253] utilized parameters and non-
parametric correlation coefficients to conduct correlation 
ranking for deep features, so as to eliminate redundant fea-
tures that are relatively unrelated and achieve better model 
performance after eliminating redundant features. Messadi 
et al. [225] effectively combined traditional features (ABCD 
rules) on an artificial neural network to achieve an increase 
in the rate of melanoma recognition of true positives, while 
ensuring the interpretability of the depth model. Codella et 
al. [252] proposed a fully convolutional U-Net structure that 
combines RGB and HSV channel input, which could better 
explain the feasibility of diagnosis that met the understand-
ing of physicians. With continuous breakthroughs, Yuan et 
al. [254] expanded the early convolutional-deconvolutional 
network (CDNN) model and combined multiple color chan-
nels as a dual threshold mask to achieve better segmentation 
results. Considering that the lesion area generally had obvi-
ous texture deformation, Kaur et al. [255] introduced a hy-
brid deep learning method that used feature vectors based on 
traditional textures as input to train deep neural networks. It 
achieved excellent performance in RCM skin disease image 
recognition. Pour et al. [256] verified that images from the 
transform domain had the potential to improve performance 
on the improved model of the CIELAB color space. Ab-
hishek et al. [257] proposed a depth segmentation frame-
work that used additional color channels and light-invariant 
intrinsic gray and shadow attenuation images to enhance 
RGB dermoscopy images, and evaluated the proposed 
method on three datasets Effectiveness. Different models 
have different emphases on learning objectives, so model 
integration can bring new enlightenment to both deep learn-
ing models and traditional machine learning algorithms. 
Khatibi et al. [259] firstly input the pre-processing images 
into four deep learning models to extract abstract features, 
and then use three unsupervised machine learning algo-
rithms to aggregate the segmentation results of the abstract 



Aut
ho

r P
ro

of
s 

“F
or

 P
er

so
na

l U
se

 O
nl

y”

Image Analysis and Diagnosis of Skin Diseases - A Review Current Medical Imaging, XXXX, Vol. XX, No. XX    23 

features after spliced. Experimental results show that 97% 
of the segmentation accuracy is achieved on 877 large reso-
lution data sets. 
 In some studies, the idea of classification models will 
also be used to improve performance by combining multiple 
models. Due to the difference in network depth and module 
structure, different models will have different emphases on 
the same data set or task learning. Attia et al. [258] pro-
posed a combination of FCN and LSTM [260] to segment 
melanoma images, and concluded that the hybrid method of 
RNN and CNN was superior to the method that only relies 
on CNN. The combination of different levels of features in 
the model training process to obtain more matching infor-
mation has also aroused strong interest among scholars. Bi 
et al. [261] proposed multiple embedded FCN stages to 
learn different levels of visual features of skin damage, and 
fused these features together to accurately segment skin 
damage. Li et al. [262, 263] performed hierarchical supervi-
sion to obtain low-level boundary information and used 
chain residuals to fuse multi-level features. Ji et al. [264] 
used the supervised block to learn the output features in the 
up-sampling stage of the modified U-Net model, and finally 
integrated the multi-path output to obtain better perfor-
mance. Liu et al. [265] Introduced distance metric-based 
learning before the input of the classifier, and obtained the 
intermediate feature representation by using the relationship 
between different image samples, so that performance will 
be more robust when dealing with large intra-class differ-
ences and inter-class similarities. Bozorgtabar et al. [266] 
designed the side output to explore the role of the features in 
the middle layer. In the end, in addition to outputting the 
segmentation contour probability map, the fuzzy boundary 
of the lesion can also be obtained to provide visualization. 
Nathan et al. [267] introduced coordinate convolution be-
fore passing the input image to the encoder. This helped the 
network to determine features related to translation invari-
ance which further improved the generalization ability of the 
model. The main advantage of multi-scale is to provide ac-
curate boundaries with different scales and contrasts, which 
brings great help to skin disease diagnosis tasks [268]. 
Singh et al. [269] used a multi-scale input strategy to select 
filters with variable scales, which better matched specific 
skin segmentation tasks. Zhu et al. [270] presented a novel 
adaptive scale module, which could effectively dynamically 
integrate multiple scale information and provide greater 
self-learning ability. Bi et al. [271] adopted a multi-scale 
strategy to scale the image input to seven scales, and per-
formed a flip operation on each scale to segment skin le-
sions, model with these operations successfully improved 
the over-segmentation or under-segmentation. Jafari et al. 
[58] simultaneously used the local and global regional fea-
tures of clinical images to make decisions on the final out-
put after learning the local and global information inde-
pendently. Although the prior knowledge of the target object 
has been proven effective in skin disease diagnosis for a 
long time, few have embedded prior knowledge into a deep 
learning framework. Mirikharaji et al. [272] encoded the 
shape of the lesion as prior knowledge of FCN. By further 
penalizing counterexamples in the loss function, it could 
bring a good improvement based on different original seg-
mentation models. 

 In addition to changing the novel model, people are also 
considering the development of effective deep learning 
models for skin lesion segmentation from other aspects. 
Goceri et al. [273] designed a new adaptive and asymmetric 
loss function and verified its superiority for the task of le-
sion segmentation on ten networks. Zhang et al. [274] pro-
posed a new loss function based on Kappa index, which 
could be used for medical image segmentation in CNN. Un-
like Dice loss, this loss function considers all pixels (includ-
ing background pixels) in the evaluation of predictive seg-
mentation. In some cases, Kappa loss helped to make seg-
mentation more accurate on six datasets. The image seg-
mentation task itself has a large area of background area, so 
it is easy to produce the phenomenon of category imbalance 
in pixel-level segmentation task. Similarly, the loss of Dice 
directly ignores the punishment of negative sample pixels, 
which will greatly mislead the training of the model. Ab-
hishek et al. [275] designed Matthews Correlation Coeffi-
cient Loss to monitor the confidence of positive and nega-
tive samples at the same time, and verified the conclusion 
on open data sets. Hasan et al. [276] proposed a hybrid loss 
function on a new lightweight segmentation model, which 
maximized the prediction area to approximate the true val-
ue. Zhang et al. [277] adopted an improved optimization 
algorithm to optimally select the weights and deviations in 
the network, and optimized the efficiency results of CNN. 
At the same time, for skin damage segmentation, some peo-
ple find that a considerable part of the dataset had a low 
degree of consistency with the true value, which indicated 
that there would be a certain difference in training. Ribeiro 
et al. [278] removed noisy samples from the dataset, and 
removed excessive details from the boundary truth values of 
the remaining samples to improve the effect. Since the 
method of the deep segmentation model cannot be easily 
extended to datasets with multiple image annotations, Miri-
kharaji et al. [279] suggested an ensemble learning scheme 
to effectively deal with the differences in segmentation an-
notations. This method improved the generalization perfor-
mance of the deep segmentation model by using all availa-
ble annotations. 
 As more and more excellent deep learning models are 
designed, the types of medical images studied are almost all 
concentrated on the dermoscopy image dataset,  The public-
ly available large-scale dermoscopy dataset has excellent 
imaging quality and high field recognition. Although the 
clinical images that are easier to obtain in comparison have 
better appearance geometric features, clinical images are 
rarely used in skin segmentation tasks. Because the observa-
tion range of the original clinical image is too large, it is a 
big challenge for the algorithm to learn the characteristics of 
the lesion area. Raj et al. [280] segmented psoriasis lesions 
in clinical images with complex backgrounds and challeng-
ing environments. Udrea et al. [281] obtained segmentation 
of lesions of images acquired by mobile devices based on 
deep networks of GANs. Based on many images acquired 
by smartphone cameras, the performance of the network 
was verified. Lesion segmentation has also been tried on 
more types of datasets and disease types. Biopsy images 
contain more internal information about the lesions. For this 
type of images, it is often necessary to consider prepro-
cessing artifacts caused by staining. Pal et al. [282, 21] stud-
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ied the use of deep learning methods to achieve this. A seg-
mentation task of small biopsy tissue image datasets for 
psoriasis. Bozkurt et al. [283] conducted an in-depth study 
on the structure of deep neural networks applied to RCM 
image classification, and proved that this task had a signifi-
cant improvement over the previous latest results[284]. 
Deep learning medical image segmentation model can also 
be applied to high-frequency ultrasound (HFUS) images. 
Czajkowska's team [285] used high-frequency ultrasound 
(HFUS) images to automatically segment skin layers, out-
performing current state-of-the-art algorithms on 380 pa-
tients. The practical application of the algorithm often meets 
many constraints, among which the dermoscopy acquisition 
equipment obviously does not have a high-performance pro-
cessor and high-capacity memory. Sarker's team [286] came 

up with a new lightweight GAN model to accommodate this 
deployment environment. One-dimensional kernel decom-
position is used to reduce the burden of two-dimensional 
convolution filtering, and multi-scale feature fusion, channel 
and spatial attention monitoring and binary loss function are 
used to improve the performance of the lightweight model. 
Based on the U-Net model, Wibowo et al. [287] combined 
LSTM and depthwise separable convolution structures, re-
spectively, and compared MobileNet V3-UNet, a light-
weight, high-performance model that was more suitable for 
the task of segmentation of lesions, with better performance 
than several advanced methods on three public data sets. 
 In order to facilitate reference to the current literature on 
the segmentation of skin lesions, we list Table 3 below by 
year. 

 
Table 3. Current research reference of skin lesion segmentation. 

Refs. Year Dataset (Category) Model & Method Remarks 

[202] 2001 195 cases (5) LDA Using uniform segmentation and feature selection based approach 

[193] 2013 30 images (2) PCA + MRF SLIC and image propagation for contrast refinement 

[184] 2015 250 images (2) 
CIELAB + Geomet-

ric model 
Automatic cluster selection using Fuzzy C-means based on histogram attributes 

[196] 2016 KTH-TIPS (10) SFTA + Threshold Deformable models for model segmentation of curve evolution 

[257] 2016 1,500 images  Hybrid CNNs Improving the block structure in FC-DenseNet by referred to the DPN network  

[274] 2016 Dermquest CNNs Images from the transform domain 

[180] 2017 ISIC-2017 FCN-8s High-Resolution Clinical Images 

[198] 2017 169 images (2) HSV + KNN New Segmentation-based SFTA method for texture feature extraction 

[228] 2017 ISIC 2017 U-nets + C-Means Few-shot learning method for the lesion segmentation task 

[254] 2017 ISIC 2016 U-net + RGB&HSV Maximizing the label consistency between similar pixels through CRF 

[256] 2017 ISIC 2017 FCNs Depth features, combining improved moth Flame optimization algorithm 

[260] 2017 ISIC 2016 RNN + LSTM Atrous convolution 

[263] 2017 ISIC 2016 FCNs Lightweight generative adversarial network 

[268] 2017 ISIC 2016 FCNs Serial attention network 

[284] 2017 3,000 images GAN Coordinate Convolution and Deep Residual Units 

[287] 2017 504 images CNNs Using a multi-scale input strategy to select filters with variable scales 

[178] 2018 12,600 images (4) CNN A multiresolution convolutional neural network with partial label training 

[179] 2018 56 images (4) U-net A multi-class segmentation method based on FCN 

[190] 2018 PH2 SLIC Using histogram thresholding on optimal color channels 

[199] 2018 PH2 Boltzman Entropy + 
SVM 

The combination of local variance and global threshold segmentation method 

[264] 2018 ISIC 2017, PH2 FCN Digital hair removal by deep learning 

[265] 2018 ISIC 2016, 2017 CNN Basing on Multi-Scale Attention Convolutional Neural Network 

[266] 2018 ISIC 2018 U-net Attention Gate, Spatial and Channel Attention U-Net  

[285] 2018 90 images U-net Coordinate convolution before passing the input image to the encoder 

[191] 2019 206 images (2) SLIC Random region fusion combined with a pixel-based Markov random field model 

Table (3) contd…. 
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Refs. Year Dataset (Category) Model & Method Remarks 

[200] 2019 PH2 
Multiple Random 

Walker 
Utilizing shape and symmetry features 

[217] 2019 ISIC 2017 LinkNet-152 Using two pre-trained networks and a five-node classifier  

[219] 2019 ISIC 2017 ResNet-50 Preprocessing multiple pre-trained networks 

[220] 2019 50 WSIs FCNs Three segmented structure pre-trained strategies initialized the feature extractor 

[222] 2019 ISIC 2018 
DeepLabv3+ + 

ResNet-101 
Integrating multiple convolutional neural network feature extractor modules 

[248] 2019 PH2, ISIC 2017  Yolov3 + GrabCut Morphology-based hat transformation and DeeplabV3+  

[250] 2019 ISIC 2017, 2018 
GAN + Pix2pix + 

Attention 
A graph-weighting method to control the relative weight of feature areas  

[270] 2019 ISIC 2016, 2017 GAN A fully convolutional U-Net structure that combines RGB and HSV channel input 

[181] 2020 57 images (4) Encoder-decoder Jointing dictionary learning 

[187] 2020 170 images (2) Fuzzy C-Means Image bit-plane multilayer approach 

[188] 2020 PH2, ISIC 2018 MRF The SLIC algorithm combined the average RGB colors of superpixels 

[192] 2020 
MED-NODE, 

Dermofit 
GHT+ LBP+  

SVM 
Using MRF and PCA 

[195] 2020 ISIC 2017, 
DermQuest 

Threshold +  
morphological 

LBP and GHT to extract features; SVM to get good segmentation results 

[206] 2020 ISIC 2017 FCN-8s A convolutional neural network with an attention mechanism 

[229] 2020 23,906 images CNN + K-Means Automatic weak labeling of data by using threshold method 

[230] 2020 PH2  Deeplab V3+ An unsupervised segmentation algorithm for lesions 

[231] 2020 ISIC 2017, PH2 U-net + ResNet U-Nets versus clustering 

[236] 2020 PH2 U-net K-means clustering and improved Mask R-CNN 

[237] 2020 ISIC 2017, PH2 CRF + 15 CNNs The hair removal algorithm to preprocess the image 

[258] 2020 ISIC 2017, PH2 FCN + DPN Discrete wavelet transform 

[259] 2020 
ISIC 2017, 2016, 

PH2 
CNN +Attention Two-stage pixel neighborhood technology 

[267] 2020 ISIC 2017, PH2 U-net + Attention Performing boundary fine segmentation with the watershed algorithm 

[269] 2020 ISIC 2017 U-net + CIELAB Consistency monitoring module of global context before sampling input on U-Net 

[272] 2020 
ISIC 2017, 

DermoFit, PH2 
U-net A dense jump module  

[277] 2020 ISIC 2017 
ResNet-

50+DenseNet-201 
Attention-based deep convolutional neural network 

[279] 2020 
ISIC 2016, 2017, 
ISIC 2018, PH2 

U-net 
Parameters and non-parametric correlation coefficients to conduct  

correlation ranking  

[281] 2020 ISIC 2018 ResNet-34 Combining multiple color channels as a dual threshold mask 

[283] 2020 
ISIC 2016, 2017, 

ISIC 2018 
U-net Feature vectors based on traditional textures as input  

[293] 2020 
ISIC 2017,  

DermoFit,, PH2 
U-net Multistage fully convolutional networks 

[294] 2020 ISIC 2017, PH2 U-net + FCNs Multiple embedded FCN stages and fused features together  

[295] 2020 Dermquest, DermIS CNNs Dense connected deconvolutional network 

[296] 2020 ISIC Archive DeepLab V3+ Hierarchical supervision and using chain residuals to fuse multi-level features 

[297] 2020 
ISIC Archive, 

PH2, DermoFit 
FCNs Middle-level feature learning 

[298] 2020 350 images U-net Distance metric-based learning before the input of the classifier 
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6. MULTI-TASK MODEL 

 For the tasks in the skin disease image intelligent analy-
sis, recent scholars have done a lot of research work. For 
example, from the perspective of image preprocessing, 
model structure, diagnosis algorithm, loss function, etc., to 
improve the diagnosis effect, or to promote the application 
of the model from the perspective of the applicability of the 
task and the limitation of the disease. But most of the re-
search goals are a single task, strictly speaking, this is a lim-
itation for the medical diagnosis task itself. 

6.1. Multi-task Model Based on Structure 

 CAD has become an important research hotspot of artifi-
cial intelligence in the medical image analysis field. CAD 
usually includes five steps: data collection, data prepro-
cessing, lesion segmentation, feature extraction, and diagno-
sis and classification. The above contents are all people's 
research and elaboration on the single step in CAD. Howev-
er, in skin disease diagnosis, sometimes it is often necessary 
to develop a two-stage framework. The segmentation of the 
lesion is input to the classification model to achieve higher 
accuracy. The segmentation task is used to detect the loca-
tion and boundary of the lesion and extract the lesion area, 
while the classification task is used to diagnose the type of 
lesion. Nevertheless, the segmentation and classification of 
skin lesions are still two highly related tasks. Skin lesion 
segmentation helps to remove interference in image data 
(such as dermoscopy images) and improves the accuracy of 
skin lesion classification, while category-specific diagnostic 
information also helps to highlight the area of the skin le-
sion, thereby helping the skin lesion Segmentation. 
 Some studies have begun to propose that the output of 
simple segmentation is used as a model for classification 
tasks, and the diagnosis results can be significantly im-
proved. Some studies have implemented a two-stage model 
using traditional machine learning methods. According to 
the feature information of the dark spots or droplets on the 
segmented images, Maglogiannis et al. [288] implemented 
an efficient two-class classification of melanoma through a 
classifier. Premaladha et al. [289] utilized threshold seg-
mentation in combination with classifiers in benign and ma-
lignant tasks to overcome the light and shadow interference 
of the image and achieved high accuracy. Patiño et al. [290] 
first adopted the super pixel merging strategy with RGB 
criteria to segment the lesions, and realized three classifica-
tions by logistic regression combined with SVM. Deep 
learning algorithms have certain advantages in feature ex-
traction, so there is research and application of deep learning 
models to achieve the stage of lesion classification. Aish-
warya et al. [291] used K-means and Fuzzy C-means clus-
tering algorithms to segment lesions, and achieved an effi-
cient two-class classification of melanoma on the CNN 
model. Sikkandar et al. [272] developed a classification 
model in three steps, which were segmentation based on 
Grabcut algorithm, feature extraction based on Inception v4, 
and classification based on adaptive neuro-fuzzy classifiers. 
Goceri et al. [292] supplemented the automated detection of 
facial disorders (ADFD) segmentation algorithm with relat-
ed denoising operations and proposed a new loss function. 

DenseNet201 was configured to achieve the best perfor-
mance on the public dataset. Amin et al. [293] used wavelet 
transform and Otsu threshold algorithm to process segmen-
tation tasks, and then used features extracted from two pre-
trained models of AlexNet and VGG-16 for classification. 
Compared with the results of existing work, this confirmed 
that the proposed method could classify skin lesions more 
accurately. Nazi et al. [294] compared nine different image 
enhancement methods on the original training images to 
improve the segmentation effect, and used DenseNet as a 
feature extractor to complete the classification of melanoma. 
Almaraz-Damian et al. [295] proposed a new CAD system 
to detect and classify malignant skin lesions. On the premise 
that the region of interest (ROI) was obtained, the fusion 
rules of interactive information were used to fuse the deep 
features extracted by CNN with the handcrafted feature 
ABCD rules related to medical algorithms, which verified 
the effectiveness of feature combination. Recently, there 
have been literatures that only use deep learning to achieve a 
complete two-stage task, which has gained some advantages 
over previous methods. Prathiba et al. [296] trained FCRN 
to extract the output of the lesion area from the skin disease 
image, and used these outputs for the residual network for 
melanoma classification. For realizing the final classifica-
tion, Khan et al. [297] Input the R-CNN segmentation re-
sults into DenseNet, and adopted an entropy-controlled 
SVM to merge the two different levels of feature maps ex-
tracted from DenseNet. They discussed that in the future, 
feature vectors would be extracted on more architectures, 
and feature selection strategies would be improved to identi-
fy the most important features. Jayapriya et al. [298] fin-
ished a hybrid framework to combine two FCNs based on 
VGG-16 and GoogleNet, and used deep residual networks 
and hand-made features to extract features from segmented 
lesions to complete classification. Chang et al. [150] input 
the segmented image and the original dermoscopy image as 
a combination into the skin lesion classification network. 
The experimental results showed that the segmentation 
model and the classification model had achieved good per-
formance on the international standard industry classifica-
tion dataset. Han et al. [299] first used R-CNN to diagnose 
cancer by extracting lesion areas from more than 180,000 
clinical photos. Experimental results showed that the accu-
racy of the algorithm was comparable to that of a dermatol-
ogist.  
 To compare the performance differences between the 
two assistive diagnostic processes, Maron et al. [300] 
trained two models for melanoma recognition on segmented 
and unsegmented dermoscopy images. Experimental results 
show that image segmentation plays an irreplaceable role in 
model recognition performance and can effectively remove 
the physical noise in the adjacent area of the lesion. Howev-
er, in the actual execution steps, the performance of the 
whole model may be degraded if unqualified segmentation 
results are introduced. In order to further explore the effect 
of different input forms of skin lesion segmentation masks 
on the classification performance of dermoscopy images, 
Mahbod et al. [301] verified the results on the benchmark 
classification network, and adopted the segmentation mask 
in an appropriate way could significantly improve the over-
all classification performance. However, using the mask in 
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an inappropriate manner by removing all background infor-
mation greatly reduced the classification results. Some re-
searchers have successfully verified that the segmentation 
task can help the performance of the classification network 
[302]. Conversely, the category positioning information of 
the classification network can also help achieve accurate 
segmentation. Xie et al. [303] proposed a deep convolution-
al network model that could be guided by each other to 
achieve both skin lesion segmentation and classification and 
diagnosis tasks. The ensemble network was mainly executed 
in two steps. The first was to use the mask generated by 
rough segmentation as the input of the classification net-
work, which was beneficial to extract the effective features 
of the skin lesions. Then the skin lesion location information 
refined by the classification network was input into the en-
hanced segmentation to make the segmentation result more 
accurate. 

6.2. Multi-task Model Based on the Loss Function 

 In the two-stage method, the model output of a single 
task is used as the prior work of the next task. Although 
satisfactory results can be obtained, but the knowledge 
learning process of the prior task is also worth exploring. 
Multi-task learning (MTL) aims to obtain better diagnostic 
features than the original task by sharing feature learning 
knowledge between related tasks. 
 Compared with the technology that solves a single task, 
the multi-task network technology is more robust and effi-
cient. To a certain extent, it can effectively improve the 
learning efficiency and potential prediction accuracy of spe-
cific task models. In the field of assisted diagnosis of medi-
cal skin disease image analysis, researchers found the opti-
mal performance of the model by sharing parameters among 
several parallel tasks. By constructing the task of combining 
different modal data, Kawahara et al. [156] also proposed to 
complete the classification of the seven-point checklist 
standard and skin disease diagnosis in one optimization. Pal 
et al. [17] regard the scoring tasks that affect the three pa-
rameters of psoriasis condition grading as interdependence 
and were designed in the same multi-task network. Using 
the classification of skin lesions as an auxiliary task, Liao et 
al. [304] trained a multi-task deep learning model. By joint-
ly optimizing the two tasks of skin damage classification 
and body position classification, the performance of skin 
damage classification is significantly improved. In addition, 
there are studies to arrange several auxiliary tasks to im-
prove the effectiveness of the target task. Vesal et al. [305] 
proposed adding a regional suggestion network to achieve 
target positioning, and used this as an auxiliary task for fine 
segmentation of lesions. 
 It is different from the deep learning method that uses 
two networks to perform tumor segmentation and classifica-
tion in a two-stage framework. Yang et al. [306] used a mul-
ti-task method to design a deep learning model that could 
simultaneously segment and classify skin lesions. Among 
them, a two-stage classification model was used to improve 
the performance of classification and the model verified the 
feasibility of multi-task learning on a public dataset. Li et al. 
[307] proposed a deep learning framework that consisted of 
two FCRNs to simultaneously output segmentation results 

and rough classification results. Song et al. [308] designed 
an end-to-end approach to design a three-stage multi-task 
structure, and simultaneously performed lesion boundary 
detection, lesion segmentation, and disease classification 
tasks, which was superior to the state-of-the-art level under 
an improved loss function. Designed to improve classifica-
tion and segmentation performance at the same time, Jin et 
al. [309] also proposed a similar three-stage network to ag-
gregate cascading knowledge and transfer learning 
knowledge for different tasks. This method could avoid 
weight experience selection for different learning tasks. 
Wang and his team [310] designed a multi-task model for 
the diagnosis task of melanoma, embedding the lesion struc-
ture information in the skin lesion segmentation task into the 
lesion recognition task, and using the lesion type infor-
mation in the recognition task to assist the pixel-level seg-
mentation performance. The reliability of skin lesion analy-
sis can be improved by integrating clinical knowledge into a 
deep learning architecture. The resulting automated system 
presents a three-level cascade model structure to further 
improve the representation of a multi-task melanoma diag-
nostic model. The task of segmentation and disease classifi-
cation is adopted by most multi-task models. However, for 
the task of segmentation of lesions, the label of disease iden-
tification brings more labeling information to the multi-task 
model, which may not conform to the actual medical diag-
nosis logic. Liu et al. [311] used the detection of lesion edg-
es as an auxiliary task of lesion segmentation, which could 
guide the segmentation model to pay more attention to the 
external edges of lesions and achieve better performance on 
the open data set. 
 As we know, CNN model constantly reduces the dimen-
sion of complex nonlinear features through convolution op-
eration to capture deep linear features of data, which is one 
of the most efficient methods to find effective features of 
data. However, this abstract convolution operation comes at 
the expense of model interpretability. In the field of medical 
diagnosis, which is important to human health, professional 
doctors will never acknowledge the performance of opaque 
deep learning models. In the current field of machine learn-
ing, feature checking is frequently used to visualize model 
results during model reasoning. Popular strategies are the 
ability of class activation maps to highlight the image re-
gions that contribute most to the feature maps at the model 
output level, or even to obtain the attention-discriminating 
deep features at the model feature extraction level. Howev-
er, these methods can only be used after the training of the 
model and have no effect on changing the existing training 
model in time. In this case, some multi-task models [312] 
try to improve the interpretability and performance of CNN 
at the same time, which can guide the model with correct 
discriminant features in the training stage of the model. Bar-
ata et al. [127] imitated the diagnosis procedure of derma-
tologists and took the feature map extracted from CNN im-
age data as the coding task. The decoding task was to make 
a multi-stage diagnosis according to the fixed levels of skin 
lesions by using LSTM model. The input of decoding task is 
filtered by the attentional module, which is helpful to 
strengthen the enhancement effect of refinement category on 
model performance. The Coppola team [313] is doing some-
thing similar. The rule-based method of the seven-point 
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checklist has been widely used by doctors in practice and 
has a certain reference value. Different from previous stud-
ies [314] that only mapped the output to the score of the 
checklist to get the final diagnostic result, they added an 
additional 7-point evaluation index diagnostic task branch in 
the checklist in addition to the original diagnostic task of 
diseases, so that the multi-task model constructed in this 
way can make the deep opaque model have some interpreta-
bility. At the same time, the model introduces a gated struc-
ture to automatically learn beneficial features, which can 
also be used to directly explain the information shared be-
tween different tasks. 
 The commonly used medical classification tasks and 
segmentation tasks are not uniform in the difficulty of spe-
cific research objects. The team hoped to supplement the 
more challenging segmentation task with the classification 
task, which is easier to achieve in the research objective. 
Such joint training method has been proved in the previous 
literature to achieve better cooperation between tasks. Kong 
et al. [315] extracted the deep feature graph on the same 
benchmark backbone network, and then proposed a cross 
fusion module of key elements for the fusion interaction of 
multi-task branches. The idea of a crossover is to mitigate 
the performance degradation caused by feature mismatches 
between classification and segmentation tasks, since it is 
significantly easier to obtain the correct deep features for 
classification tasks. At the same time, in terms of loss set-
ting, additional cross-supervision was also set for the 
branches of the classification task, in order to make the clas-
sification task with excellent performance as the dominant 
branch of the multi-task model. In the area of skin diseases, 
multi-task models are likely to require more tags than sin-
gle-task models, which will undoubtedly increase the work-
load of professional physicians. Chu et al. [316] proposed a 
weak label task as a branch of multi-task, which can achieve 
5% accuracy improvement and model acceleration effect 
compared to the original single task. Specifically, they use 
the existing segmentation labeling and rely on k-means clus-
tering algorithm to generate weak labels for lesion classifi-
cation, so as to optimize the two-loss functions. A variety of 
task combinations is an important factor affecting the per-
formance improvement of multi-task models. In the field of 
skin diseases, focus segmentation tasks and disease recogni-
tion tasks are widely used. Partly because these two tasks 
are really necessary in clinical practice. They can greatly 
assist professional doctors in the diagnosis of skin diseases, 
save costs and reduce the subjectivity of doctors' diagnosis. 
On the other hand, the result of segmentation of lesions can 
provide a region of interest, which can add a layer of atten-
tion supervision to the task of disease identification. Simi-
larly, the image-level label's output by the disease recogni-
tion task can guide the pixel-level classification of the lesion 
segmentation task. In addition, Jin's team [317] designed the 
multi-task model based on the prognostic prediction of dis-
ease and the task of lesion segmentation. Accurate predic-
tion of the treatment response of individual patients is cru-
cial for personalized medicine, and the results of segmenta-
tion of lesions can enable prognostic task models to focus 
on the edges of lesions. Therefore, in their multitask model, 
two twin networks were constructed according to the input 
multimodal images before and after treatment. The prognos-

tic task is composed of multi-scale features of subnetworks. 
On the basis of the mainstream focus segmentation task and 
disease recognition task, Song's team [307] constructed 
three multi-task branching models in order to explore the 
contribution of focus edge features in focus detection task to 
other clinical diagnosis tasks. A feature pyramid and a re-
gional recommendation network are used to generate rough 
regional branch inputs. On open data sets, they demonstrate 
that the three-branch multitask network can indeed provide 
an overall performance improvement for segmentation and 
recognition tasks. 

7. CHANLLENGES 

 Above, we have described in detail the development 
process of the image analysis field in skin disease diagnosis. 
Deep learning technology has attracted widespread attention 
in the field of skin disease diagnosis and has made obvious 
progress. On the internationally public datasets, researchers 
continue to use improved models and algorithms to set new 
highs in indicators. In some literature, the experimental re-
sults can almost reach the level of dermatologists. It goes 
without saying that this is a constantly evolving and chal-
lenging field. This chapter aims to summarize the phased 
progress and existing shortcomings of the current research 
through the collation of the above literature and the elabora-
tion of the research content, and guide the focus of future 
research work. Deep learning is essentially a data-driven 
model. Judging from the current state of the literature, artifi-
cial intelligence faces two main challenges in the field of 
skin disease image analysis diagnosis: limitations of data 
and models. 
 Each research will use one or more datasets to verify the 
performance of the system, and the experimental results are 
usually a breakthrough improvement over the performance 
of existing methods. However, we should treat the results in 
the literature with caution, mainly because the performance 
of the CAD model is very dependent on the quality of the 
dataset. Without exception, the excellent results of the mod-
el system are based on the specific dataset specified by the 
experiment, which does not have strict applicability in the 
true sense. The performance of deep learning algorithms 
mainly depends on the quality of the image dataset. Just 
slight image disturbances are enough to affect the diagnosis 
performance of CNN [318]. This is common in different 
publicly available skin lesion datasets. This paper has con-
ducted some investigations and sorted out the relevant da-
taset in the latest research literature. Challenges involved in 
the skin disease image analysis task from the aspects of the 
dataset and model structure can be found in Fig. (9). We 
found that the problems exposed by the dataset are as fol-
lows. 

7.1. Limited Overall Size of Dataset 

 In the field of skin disease image analysis diagnosis, the 
largest publicly available dataset, MoleMap, has only 
102,451 images. Compared with millions of deep learning 
datasets in other fields, the total amount of labeled medical 
image data is very limited. Therefore, the problem frequent-
ly exposed in medical tasks is the over-fitting of models 
caused by insufficient sample data. Since medical data is 
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more derived from patients' clinical visits, a considerable 
proportion of the data will not be used for research due to 
privacy agreements. At the same time, data labeling is also a 
costly task for dermatologists. Although there are currently 
some semi-automatic labeling methods, such as LabelImg 
[319] and LabelMe [320], they can effectively improve the 
efficiency of physicians' labeling. However, on the one 
hand, the proportion of manual participation in these meth-
ods is still too large, and the quality of the final data labels 
obtained is still far inferior to the labels that are completely 
manually labeled. At present, some researchers have de-
signed some algorithms to realize the automatic acquisition 
of labels, but these methods of labeling have great limita-
tions on data types [321]. The future work is to develop 
more robust algorithms to obtain data annotations. Similar-
ly, transfer learning can also be considered as a branch of 
small-sample learning, in which pre-trained models are 
proven to be feasible for different tasks. The specific com-
bination of models mainly depends on the actual data set 
size of the specific task and the similarity between different 
data sets. For example, Abubakar et al. [327] proposed that 
SVM works best as a classifier, but Hosny et al. [328] veri-
fied on more than one dataset that the accuracy of the SVM 
classifier was not high compared to other classifiers. In ad-
dition, another method of transfer learning is to freeze part 
of the deep network and train the remaining parameter lay-
ers. Although this method can alleviate the dilemma of the 
data set to a certain extent, it actually uses additional data 
information, not a small sample in the true sense, and deep 
features will still be subject to training limitations. We be-
lieve that in the two-stage implementation, the latter meas-
ure can only be regarded as an additional improvement in 
terms of performance. The real future research focus should 
be on how to achieve a better representation of small sample 
data. 

    In contrast, it was much easier to obtain large-scale 
unlabeled skin data. Some unsupervised CAD models [322, 
323, 324, 325] have been proposed to complete special di-
agnostic tasks and can also achieve good diagnostic results. 
Unsupervised learning can reduce the dependence on large-
scale labeled data, while achieving good performance. As 
far as the current research results are concerned, the perfor-
mance of unsupervised learning on the same task is much 
lower than that of supervised learning on the same level of 
the data set. However, it is mentioned in the existing litera-
ture that the method of unsupervised learning can be applied 
to more practical tasks, for example, as a preprocessing step 
of supervised learning. At present, small sample learning 
methods have been applied to the field of auxiliary diagno-
sis of skin diseases [326]. Among them, metric learning is 
the most common. This method divides the task into two 
stages, representation and measure. 
 In addition to the unsupervised methods mentioned 
above, self-supervised learning can also provide another 
way to solve this kind of problem. Self-supervised learning 
models usually need to design appropriate auxiliary tasks 
from the data level according to the actual target tasks. This 
auxiliary task is designed to find a valid feature representa-
tion that allows large quantities of unlabeled data to be ob-
tained. In this way, we can use a large amount of data to 
feed our model, so that our model can achieve generaliza-
tion performance. Specifically, the effective features ex-
tracted by the auxiliary task of construction can be used as 
the pre-trained weights of our target model, which is the 
most popular operation at present. To some extent, this ap-
proach does not necessarily lead to a steady improvement in 
the actual model performance. The reason is that the fea-
tures learned by the subjectively constructed auxiliary task 
do not match the needs of the target task. Such pre-trained 
weight will only lead to the misleading direction of the 

 
Fig. (9). Challenges involved in the skin disease image analysis task from the aspects of the dataset and model structure. (A higher resolution 
/ colour version of this figure is available in the electronic copy of the article). 
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model at the beginning of the training stage, thus missing 
the needs of the features. In order to meet the needs of prac-
tical tasks in different fields, the existing auxiliary tasks for 
self-supervised learning are generally divided into three 
types, among which context-based auxiliary tasks are suita-
ble for semantic domain, while time-sequential auxiliary 
tasks have relatively high data requirements for research. 
The auxiliary task based on contrast is used to extract fea-
tures that measure the similarity between samples, that is, 
the recognition ability of sample features. This kind of aux-
iliary task has very loose requirements on the data and mod-
el of the target task, so it has attracted the attention of many 
scholars. After the investigation, self-supervised learning 
has not yet been applied in the diagnosis of skin diseases, 
which means both opportunities and challenges. We believe 
that it will not be long before suitable self-supervised auxil-
iary tasks are designed to improve the performance of the 
model. 
 While some tasks can be accomplished by cleverly de-
signing unsupervised tasks, supervised tasks are more accu-
rate and robust in terms of performance. Therefore, in more 
studies, we will choose the data-enhanced way to feed the 
model. Data enhancement, in a sense, uses a known label to 
generate different input data, which can increase the training 
data of the model, equivalent to expanding the original data 
set. The details of data enhancement are covered in Section 
3 of this paper. However, relying too much on data en-
hancement will undoubtedly sacrifice part of data quality 
and make the model produce a certain degree of overfitting 
to harm the generalization performance. In actual research 
tasks, scholars need to reasonably induce the model to train 
more reasonably enhanced data according to the characteris-
tics of data sets and research objectives of their own tasks, 
so that the limitation of too small data sets can undoubtedly 
be alleviated. At present, there is also a part of the literature 
that describes an algorithm to automatically find the best 
combination of data enhancement methods. Similarly, all 
possible parameter combinations are summarized into a hy-
perparameter space, and then different search algorithms are 
used to find the best combination of performance indicators. 
The actual effect of this algorithm often fails to meet the 
expectation of the algorithm because it cannot afford the 
expensive calculation cost. We believe that a more reasona-
ble processing method is to consider the data level pro-
cessing based on the research objective, screen out the data 
enhancement method that meets the expectation, and then 
search for the local optimal in the limited space with the 
help of the automatic parameter seeking algorithm, which is 
promising at present. 

7.2. Long Tail Distribution of Dataset 

 A common problem in dermatological diagnosis tasks is 
the long tail distribution of the dataset. The reason is that, on 
the one hand, there are natural differences in the incidence 
of different skin diseases, and on the other hand, there are 
artificial differences in the later collection of dermatology 
departments of different diseases. Benign skin lesions gen-
erally have more cases than malignant lesions. Basal cell 
carcinoma, squamous cell carcinoma and melanoma togeth-
er account for about 98% of all skin cancers. If this kind of 
problem is serious, the CAD model will be mistakenly in-

troduced into the prejudice of the data category [329], that 
is, more objects are judged as the category of a large sam-
ple. Unbalanced datasets differ in their measures. For exam-
ple, the imbalance of accuracy is defined according to the 
proportion of data between categories, which can better de-
scribe the performance of the model. To solve this problem, 
the current literature often balances the overall training set 
samples from the data level and the algorithm level. The 
data level is generally simple and rude, and the training set 
is balanced based on the idea of data sampling and data syn-
thesis. GAN can synthesize images consistent with the dis-
tribution of the target dataset, so it has attracted a lot of at-
tention in the field of computer vision in recent years. These 
synthesized images can be used as additional data of the 
CAD model to alleviate the quality of the dataset. In this 
way, many datasets based on small samples and unbalanced 
can also show good performance in the CAD model [330]. 
However, in the context of skin disease diagnosis, the syn-
thesized image is different from the original image after all, 
and lacks reasonable interpretability. It is necessary to avoid 
the idea of mixing the synthesized image directly into the 
actual image set. However, the data-level method easily 
leads to overfitting of the training model, because the syn-
thesized data is still distributed in the area enclosed by the 
known small sample data set. However, in the actual feature 
space, the true distribution of small sample data may not be 
limited to this area. Performing appropriate interpolation 
operations outside the bounding range may be able to 
achieve better data enhancement effects. From the perspec-
tive of algorithm, there are literatures that introduce an addi-
tional sampling rate in the input sampling stage of model 
training, so that relatively balanced data sets can be obtained 
to alleviate the category bias of the model no matter whether 
it is a small sample over-sampling or a variety of original 
under-sampling. However, the specific sampling strategy 
depends on the composition of the original data set, because 
repeated sampling for the same sample and sparse sampling 
for large samples will reduce the performance of the model. 
Scholars have found that starting from the algorithm level to 
increase the model's misjudgment and penalty loss method 
for small samples, it can eliminate the model's bias on the 
small sample category [143]. This method essentially pro-
duces a new data set distribution, but it can avoid the reuse 
or waste of the training set to a certain extent. For example, 
the two artificial parameters in Focal Loss correspond to 
two small branches of this type of method. One branch is to 
focus on the number of data to weight the loss during train-
ing. Specifically, the more categories, the less weight the 
corresponding input tagged with that category will lose dur-
ing training. This weight value is inversely correlated with 
the quantity ratio in the literature, but it needs to be adjusted 
in different specific tasks. The other branch is more like a 
small skill, which is to increase the weight of loss of diffi-
cult samples in the process of model training, so that the 
model can focus more on the feature recognition of difficult 
samples and learn accurate features that are more in line 
with the research objectives. However, the design of a bal-
anced penalty matrix is a complex task, and how to set an 
applicable penalty matrix for different task types is one of 
the future works. In addition to the above-mentioned com-
mon methods, there are still some other solutions. The inte-
grated method achieves rigorous discrimination by compar-
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ing the results of the original training set and the "balanced" 
training set. In the unbalanced binary classification task, 
from a new perspective, try to design the task as anomaly 
detection of small sample categories. Anomaly detection is 
usually used to do unsupervised tasks, and its research ob-
ject is usually a large number of single categories of normal 
data, with little or no abnormal data. Therefore, the anomaly 
detection task can meet the actual task of extreme data set 
structure. At present, traditional machine learning and deep 
learning methods exist in the literature, among which tradi-
tional machine learning mainly relies on statistics, distance, 
density and other indicators. The deep learning model repre-
sented by autoencoder is the mainstream method to solve 
this kind of problem. The input and output of the autoen-
coder are composed of the same data, and the low-
dimensional features are obtained by dimensionality reduc-
tion of the convolution block. Then, the similarity between 
the feature restored image and the original input is used to 
evaluate the effect of the anomaly detection model. Howev-
er, at present, the anomaly detection task is only applied to 
the task of extreme data sets, and the actual effect is not 
much better than supervised learning. We believe that the 
combination of this anomaly detection method and the inte-
gration idea will have good scalability in future work. 

7.3. Cross-Domain Dataset 

 The sources of public datasets used in skin disease diag-
nosis studies are rather confusing, this brings serious cross-
domain problems to the diagnostic model [20]. Due to the 
skin color or skin quality of different races, the representa-
tion of the same skin disease may have a large gap, so the 
acquired image data will inevitably bring challenges to the 
generalization of the model [161]. At the same time, the 
resolution of images acquired by different institutions lacks 
uniformity. An extreme resolution will hinder the feature 
learning process of the model, and will cause the model to 
not maintain the same performance on datasets of different 
resolutions. Therefore, it is very necessary to preprocess the 
image of the dataset. However, it is concluded in actual re-
search that only considering the preprocessing operation is 
not enough at all. The current literature summarizes this 
type of problem as domain adaptation, which is mainly re-
flected in: the classification boundary of the classifier di-
rectly trained on the source domain cannot distinguish the 
samples of the target domain well. The actual methods pre-
sented in the current literature can be roughly divided into 
three types, which are the migration from the source domain 
to the target domain at the sample, feature and model levels, 
respectively. The method of sample migration needs to find 
similar data in the source domain, adjust the weight of the 
similar data by relying on manual experience, and finally 
retrain the classifier on the resampling sample set. Feature 
migration simply means replacing the migrated object with 
the common features of the sample. The corresponding idea 
is mainly an adaptive method based on features [104]. Map 
the features of different domains to the same space and 
achieve the smallest degree of discrimination. This pro-
cessing method can also be adapted to unsupervised target 
domain learning. Model transfer is the mainstream of re-
search at the present stage. The specific approach is to fur-
ther learn the model through a small amount of target do-

main data on the basis of source domain training, so as to 
obtain good model performance. In addition to considering 
knowledge transfer across domains, there are research de-
sign models to learn domain-invariant features for detection 
tasks. Domain invariant features have strong sample inclu-
sion and are general features between categories. The model 
includes adversarial learning module and a consistent regu-
lar module. The adversarial learning module is designed to 
select the adversarial classifier with the maximum and min-
imum cross-domain classification error from a set of classi-
fiers, and then train the maximum difference between them. 
Finally, the consistent regular module monitors the minimal 
geometric distance between the pixel - and instance-level 
adversarial module outputs. This method can be applied to 
detection tasks with complex backgrounds and uneven im-
aging. In our opinion, finding an appropriate learning strate-
gy to minimize the difference in the distribution of features 
in different domains is one of the mainstream directions for 
future work in this area. In addition, there are only a few 
commonly used skin diseases in the existing research. In 
terms of actual skin disease diagnosis tasks, such research 
results may not be generalized. Future research needs to be 
more implemented in other types that are in demand. A 
highly diverse skin disease dataset is of great significance 
for the construction of an effective CAD system. 

7.4. Multimodal Heterogeneous Dataset 

 The visual features of the diseased area of the skin are 
the most critical diagnostic factor in the diagnosis process of 
skin diseases. Most of the existing researches is based on 
public medical image datasets, among which dermoscopy 
images with a single modality account for the majority. The 
classification criteria of skin diseases are very complicated, 
which makes visual features have great limitations in the 
diagnosis of many similar diseases. Therefore, some current 
researches have begun to shift in the direction of multi-
source heterogeneous numbers. Different image data types 
often contain feature information of different dimensions 
[24]. Clinical images can characterize macroscopic visual 
characteristics: the original distribution and size of skin le-
sions, dermoscopy images provide a standardized view to 
characterize some colors and textures more clearly, and his-
topathological images focus on the internal structure of the 
cell level. At present, the research on various image data 
types usually obtains the types of diseases from the visual 
end-to-end based on the image input, and all have reached 
the benchmark level, but such research is not comprehensive 
enough. In addition, there is some information that cannot 
be represented visually. Other doctor-patient information 
(such as medical history, social habits, clinical metadata, 
etc.) is clinically important in the diagnosis of skin cancer. 
This information can provide clinicians with robust clinical 
guidance beyond the imaging features used by deep learning 
algorithms in actual examinations [331]. Therefore, if the 
deep learning algorithm used for the diagnosis of skin can-
cer is only based on medical images and ignores the key role 
of the patient's corresponding clinical information, there are 
problems to a certain extent. A previous study [332] demon-
strated that the performance of both beginner and skilled 
dermatologists improved with the availability of clinical 
information, and their performance was better than deep 
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learning algorithms. It can be imagined that the multi-modal 
heterogeneous model structure based on heterogeneous da-
tasets can be favored by experts. One of the first prerequi-
sites of multimodal models is data registration. Different 
modalities need to be registered according to the individual 
or even the part of the patient, which further increases the 
difficulty of data collection. In research, text data is often 
processed by natural language processing and data mining 
methods [333]. A data fusion algorithm needs to be devel-
oped to provide the final prediction of a skin cancer diagno-
sis. The algorithm can combine features composed of clini-
cal information with imaging features from deep learning 
models. Unfortunately, in most publicly available skin le-
sion datasets, patient history and clinical metadata are miss-
ing. Even if some studies use patient metadata, the overall 
accuracy of the algorithm has been improved to a certain 
extent. However, these data only contain basic information 
such as the patient’s age, gender, and diseased location, and 
only have certain guiding significance for a small number of 
disease types. Other textual medical history information 
with high general adaptability (such as: duration of illness 
and the algorithm for the assisted diagnosis of skin diseases 
has not yet been discovered.  
 In the existing literature on multimodal fusion, it is often 
used to define the level of model fusion, which usually in-
cludes early fusion, late fusion, and hybrid fusion. The early 
fusion can combine the original features of various modal 
images together, but compared with the deep features, the 
original features have a lot of redundant information and are 
mainly global features, which does not significantly im-
prove the feature recognition of difficult samples. This is 
done by superimposing the channels of input data. This 
model is simple to implement and generally consists of only 
one complete branch, which is the most common form of 
fusion. Different from the early fusion, the late fusion will 
obtain the independent deep features of different modes, and 
more emphasis is placed on the control of total loss to real-
ize the prediction decision optimization, so as to avoid the 
error accumulation in a single classifier [334]. Such models 
usually have more than one full branch, and the number of 
parameters in the model is multiplied. In terms of perfor-
mance, it is easy to lose the advantages of multi-modal data 
sets. Proper improvement of post-fusion strategy will have 
good performance in specific tasks. As to medium-term fu-
sion, can choose the location of the fusion, for the specific 
research tasks can bring very big flexibility, it is the image 
into a high dimensional feature vector expression, and in the 
middle layer model in specific ways, such as training model 
is easy to get to the commonness between different modal, 
the so-called common, it is to identify specific research 
characteristics. According to our survey, current studies on 
multimodal models are focused on exploring strategies for 
more ingenious intermediate fusion. For example, in the 
latest medical task literature [346], the basic experimental 
effects of different fusion forms were first explored, and 
then an intermediate branch was added to realize the fusion 
of different stages on the basis of the intermediate fusion, 
which was proved to provide good results in the final exper-
iment. Although this paper provides a new attempt for mid-
term fusion research in the field of medical diagnosis, it also 
exposes the shortcomings of artificially adjusting the weight 

parameters of different stages. However, scholars have not 
been able to reach an agreement on which layer of the mod-
el can bring the best results. Existing methods often use 
methods such as concatenation and element-wise products 
to map multi-modal information features to the same multi-
modal model space dimension. But in other fields of re-
search, such as semantic analysis, multimodal fusion has 
reached a more mature stage. At that time, we learned from 
related algorithms (such as based on matrix [335, 336, 337], 
based on attention [338, 339, 340], fusion matrix and fea-
tures [341, 342, 343, 344], other methods [345]) can bring 
better results in the diagnosis of skin diseases to some ex-
tent. Many subsequent discussions on the optimal solution 
of model fusion and modal combination methods [347] have 
also become the direction of research efforts. 

7.5. Interpretability of Model 

 In terms of model development, most of the current re-
search trends focus on relying on CNN models to extract 
deep features between data. Although the deep learning 
method represented by CNN has better diagnostic perfor-
mance in most tasks [348], people may not understand how 
CNNs with internal opacity determines the output, that is, 
such deep features are in a strict sense. Lack of scientific 
explanation [111]. 
 At present, the mechanism of output results of most deep 
learning models is still a puzzle for researchers engaged in 
artificial intelligence. Therefore, especially in the high-
stakes field of health care, it is almost impossible for profes-
sional physicians to apply such models to aid in diagnosis. 
In order to effectively help clinicians, deep learning algo-
rithms need to provide semantic explanations for skin dam-
age predictions, not just confidence scores. Also, it is differ-
ent from the interpretable models recognized by academia, 
such as decision trees, linear models, etc. Existing interpret-
able AI algorithms can be divided into two categories: ad-
hoc and post-hoc. Ad-hoc interpretation, that is, prior to 
model training, researchers use known prior interpretability 
characteristics to design a model with interpretability. Such 
models are interpretable in nature, whether from feature 
extraction or decision diagnosis. At the same time, the mod-
el can be tuned or guided to focus on areas or features that 
are actually interpretable during the training phase. This is 
very advantageous for the training of complex models [348]. 
Unlike previous studies that sought to guide deep learning 
models through some prior clinical information structures, 
Pintelas' team [349] proposed a more thorough and fully 
interpretive model. The fully interpreted model is designed 
to provide transparent performance decisions for the average 
person, not just explanations based on professional back-
ground. This fully interpreted model can extract the local 
texture of the input image, relying only on the statistical 
concepts of mean and variance, which can be easily under-
stood by ordinary people. This method can construct a set of 
general feature structure systems by weight ratio, and com-
bine linear machine learning algorithms to obtain a diagno-
sis performance not weaker than deep learning model. 
 Post-hoc interpretation is to explain the deep learning 
model in the model reasoning stage. In contrast, the model 
training and model interpretation are two independent stag-
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es, and the interpretable structure or feature introduced will 
not affect the training performance of the model [350]. At 
present, the mainstream research in this direction is the per-
turbation method and gradient method. The perturbation 
method is to measure the influence of model precision de-
cline through local displacement, fuzzy and other opera-
tions. The gradient method is mainly based on the convolu-
tion layer thermal map. Simple proxy models have a more 
transparent interpretation. In general, nonlinear and complex 
models are replaced by local interpretable models. A local 
proxy model can be used to observe the features of the mod-
el well. Stieler et al. [351] used three different proxy models 
to observe the explanatory features of the ABCD criterion, 
and evaluated the features that have the greatest influence 
on the deep learning model. But such ideas must be used 
with care because they lack basic facts and methods. In par-
ticular, many studies have proposed methods that are pri-
marily influenced by visual features, such as high contrast 
and reduced noise. Many of these denoised salient graphs 
may result in strong biases that are inconsistent with the true 
interpretability of the underlying deep learning model. CAM 
thermogram is based on gradient method to calculate the 
class fraction of convolution layer, that is, feature graph. 
Therefore, this method can quantify the abstract features 
learned from the middle layer, and can obtain the visual 
result of the combination of feature graph, saliency graph 
and input dimension. Jiang et al. [352] set up the CAM 
module before the output level to provide the attention dis-
tribution of the diagnostic model of visual histopathological 
images. Olah et al. [353] proposed to perform gradient as-
cent on a unit in the middle level of the model to visualize 
the sensitivity of a single unit to global performance. Clear-
ly, this model interpretation method can show significant 
regions in a given sample, but may lack specificity for ma-
chines and people. 
 In conclusion, most of these methods can only provide 
approximate explanations, and cannot fully reflect the true 
behavior of the model, which is contrary to the rigorous 
requirements of the field of medical assisted diagnosis. How 
to establish the interpretability of deep model diagnosis has 
also become one of the obstacles to the advancement of re-
search applications. The fusion of handcrafted features or 
multi-level features in the model may provide some refer-
ence interpretability for deep learning models. For example, 
Kawahara et al. [156] provide semantic interpretation of 
network predictions according to ABCD standards or 7-
point checklist. Therefore, future research work may start 
from studying the etiology and visual characteristics of skin 
diseases, and then designing a deep network with domain 
knowledge for specific tasks. In this way, better perfor-
mance can be expected. 

7.6. Lightweight the Application Model 

 When our scholars design advanced algorithms or mod-
els, they will undoubtedly target various evaluation indica-
tors on a certain public data set, such as accuracy, recall, 
specificity in classification tasks, Dice, Jac in segmentation 
tasks, mAP in detection tasks, etc. Under the background of 
blindly pursuing model "index" performance, the existing 
models have more and more parameters, more computation, 
and complex structure, but the running speed keeps decreas-

ing. In reality, model algorithms with high "indicators" are 
only allowed to re-achieve the indicators in the researcher's 
working environment. Especially for those model algo-
rithms that need practical applications, such as skin disease 
diagnosis, this is a huge problem for non-professional hard-
ware devices. 
 For example, the application of a skin disease auxiliary 
diagnosis system is generally deployed on image data acqui-
sition equipment. While devices such as dermoscopy images 
rely on mirrors with physical magnification, clinical images 
are more mobile cameras or mobile phones. It is possible to 
add external processor hardware, but the original mobile 
devices obviously do not have the memory and reasoning 
power required by the model algorithm. Therefore, it is very 
urgent to design a model that cannot lose the high "index" 
performance of the original model, but also has the charac-
teristics of lightweight and landing. This is an important and 
very active field. At present, the general operation of model 
lightweight mainly includes several aspects, such as hard-
ware, platform and algorithm. This paper only realizes the 
lightweight of the model at the algorithm level. 
 In recent years, many scholars have made many 
achievements in deep learning compression and accelera-
tion, and a variety of neural network lightweight algorithms 
have emerged. One of the outstanding significances is the 
optimization of network structure. It was first proposed in 
the InceptionV2 model that a large convolution kernel was 
replaced by two small convolution kernels in series. Without 
affecting the effect of the model too much, the number of 
parameters can be reduced to about half of the original. This 
discovery can be embedded into most network models with-
out loss and is the first work of model lightweight research. 
Since the series of convolution kernels can be improved, can 
parallel connections also be considered? Subsequently, in 
the later version of InceptionV3, The Google team proposed 
to replace a normal convolution kernel with two parallel 
asymmetric convolution kernels. InceptionV3 splits a 7x7 
convolution into a 1x7 convolution and a 7x1 convolution. 
Under similar convolution effects, the number of parameters 
is greatly reduced, and the diversity of convolution is also 
improved. Later scholars came to the conclusion that the 
same is true for n x n convolution kernels. Instead of simply 
stacking the network layers, Inception series networks re-
duce the number of parameters by changing the size of the 
convolutional kernel. After investigation of the literature in 
recent years, it is concluded that the improvement trend of 
convolution kernel size is to use small convolution kernels 
to replace large convolution kernels. Although the combina-
tion of small convolution kernels can indeed reduce the 
number of parameters in the model, it will also bring the 
problem of too small feature area capture. In the deep learn-
ing model, the later network hierarchy will capture deeper 
abstract features. Therefore, in network design, lightweight 
modules based on small convolutional kernels are usually 
placed in shallow structures, while large convolutional ker-
nels are still used to increase the receptive field in deep 
structures. Inspired by this, more construction methods of 
the network layer are designed to realize the compression 
and acceleration of the model. ShuffleNet and MobileNet 
are outstanding achievements in the hierarchical lightweight 
of network structures. Firstly, the model presents the con-
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cept of grouping convolution, which is used to group the 
channels of the feature map into N groups. Each filter can 
operate in each group. However, the grouped output chan-
nels will lose the opportunity of information interaction. The 
solution in ShuffleNet is shuffle Operation to strengthen the 
connection between channels. On this basis, we directly 
consider the extreme case of grouping convolution, where a 
grouping consists of only one convolution. In the second 
stage, 1×1 convolution kernel is used to transform the out-
put channel, and the information fusion between channels is 
also carried out. This method is called depth separable con-
volution. In the field of skin disease diagnosis, depthwise 
separable convolution has been widely used in various task 
networks, which has quite good applicability. Directly re-
ducing the number of convolutional kernels can reduce the 
number of model parameters, but it will lead to the reduc-
tion of the output feature graph and the feature expression 
ability of the network. A similar solution is the idea of den-
sity. While reducing the number of filters at each layer, the 
feature map output at each layer is reused before the input of 
the network at each layer. Pooling operation can reduce the 
size of feature channels at will to reduce the cost of convo-
lution multiplication. Compared with convolution operation, 
pooling layer structure has no parameters that need to be 
updated. At the output level of the network, some networks 
will replace a large number of parameters of the full connec-
tion layer with the global average pooling layer. Model 
pruning is an important research branch of model light-
weight. The general idea is to set the unimportant parame-
ters in the weight matrix of model update to 0. In order to 
maintain the original performance of the model, it is often 
necessary to iteratively prune the model in small steps on a 
high-performance processor to find the most suitable light-
weight model. 
 In addition to modifying network hierarchy, model dis-
tillation is a method to improve model compression and 
acceleration in model algorithm training, and it is also a 
very common way before the model algorithm is applied. 
The essence of distillation is to fit two models of varying 
degrees of complexity so that a simple student network can 
learn from a complex and high-performance teacher net-
work knowledge capable of handling research tasks. The 
general specific approach is to define the soft label task, fit 
the loss of the student network and the teacher network in 
this task, and then make predictions on the target research 
task. The current literature basically studies this kind of task 
from two perspectives, one is the selection of teacher net-
work, and, more importantly, the definition of soft label. 
According to the literature experience description, teacher 
network and student network can be completely different 
network structures, but generally similar network structure, 
distillation effect will be better [354]. The famous Sanh 
team combined three different soft tag losses to fit two simi-
lar networks. The distilled model is 60% faster and 60% 
smaller than the original model. More than 95% of perfor-
mance is preserved on public tasks. With little performance 
loss, the model can be compressed and accelerated. [355] 
Among them, attention module level and feature hiding lev-
el have the most potential cooperation. After comparative 
experiments, they concluded that the fitting method corre-
sponding to deep structure and shallow structure is easier to 

obtain high-performance student distillation model. In the 
structural design of the model, neural structure search 
(NAS) is also used to find the network structure that con-
forms to the compression and acceleration constraints, 
which will result in a high computational cost, which will 
not be described in more detail here. The future research 
direction is to select and design an appropriate teacher net-
work and soft label combined with the research task, which 
plays a decisive role in the effect of model distillation. 

7.7. Integration of Multiple Clinical Task 

 It can be seen from more and more recent studies that 
there is a certain correlation between medical diagnosis 
tasks of different application backgrounds. Utilizing the 
correlation between the segmentation task and the classifica-
tion task to construct an integrated framework has become a 
hot topic in the diagnosis of skin diseases [273]. The core 
problems faced by classification tasks are the similarities 
within the class and the confusion of the background. There 
is a lot of artificial interference around or even inside the 
focal area of skin diseases. These uncertain and complex 
backgrounds are likely to reduce the model's ability to ex-
tract similar information from the same skin lesion category. 
The problem faced by the segmentation task is more that the 
segmented background and foreground generated by the 
model cannot be perfectly integrated at the edge, which is 
essentially a problem of poor pixel classification. Whether 
the feature information of skin lesion edge can be extracted 
is an important influence on the effect of the lesion segmen-
tation model. However, due to the uncertainty of skin edge, 
including shape, color, texture, etc., it is a great challenge to 
deal with edge pixels in the skin segmentation task. The 
current mainstream processing method in the literature is to 
use the output of the previous network to modify the latter 
network to obtain more accurate results. Since the ultimate 
goal of medical tasks is to make accurate diagnosis possible, 
some studies have put forward the advantages of combining 
classification learning and comparative learning model, 
which can be summarized as expanding the distance be-
tween classes and reducing the distance within classes. Dis-
tinguishing different categories focus on finding different 
features between different categories. However, in practice, 
data belonging to the same category may not have exactly 
the same features. For example, different expressions on the 
same person's face will learn different features. However, in 
contrast, learning, similar features of the same category are 
extracted, but such features cannot be applied to the classifi-
cation. Therefore, the two types of tasks complement each 
other to some extent. The features they focus on may over-
lap, but there is always a bias. This complementarity ensures 
that the combination of the two types of tasks theoretically 
yields an overall performance improvement. In other words, 
considering the actual model integration design, the adapta-
bility between different modules in the model and the dif-
ference of training environment will bring no small chal-
lenge to the integration of different tasks. At present, the 
design of such an integration model still depends on the 
experience of researchers engaged in related projects for 
many years, and some automatic search algorithms still can-
not be deployed in various fields based on a limited hard-
ware environment. There are also attempts to perform dif-
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ferent tasks in a multi-task model at the same time, and bet-
ter results can be obtained by effectively sharing part of the 
weight parameters of the model. Sharing weights will un-
doubtedly bring more serious hardware costs. Such a model 
will greatly increase the difficulty of model lightweight in 
practical application and limit its real research significance. 
Regardless of the extra cost, weight sharing will fail to 
achieve the desired effect due to the uncertain learning di-
rection during model training, even worse than the effect of 
any single task. It is true that the above method of utilizing 
task relevance can greatly improve the effectiveness of the 
task, but much of this relevance is reflected in the combina-
tion of the model accompanied by: 1) the construction of the 
same magnitude loss function; 2) the learning speed of the 
task balance: 3) the pertinence of target tasks (tend). These 
uncertainties in the process of model training will have dif-
ferent effects on the multi-task model, or even completely 
different. How to efficiently utilize this correlation will be a 
major challenge for researchers. These uncertainties in the 
process of model training will have different effects on the 
multi-task model, or even completely different. In practice, 
the main advantage of multi-task learning lies in merging 
models and reducing the number of model parameters. As 
for the performance boost to the target task, theoretically, 
similar tasks can improve each other's performance, which 
may not be so obvious. This is because it is not easy to 
shrink models while maintaining the performance of each 
model. Adjusting the network structure to fit the multi-task 
model is cumbersome and depends heavily on processing 
experience. In the literature, the dynamic assignment of 
weight loss is explored by many people [356]. In terms of 
the research direction of multi-task model structure, other 
mature fields, such as remote sensing and voice, will bring a 
lot of reference value to the tasks in the field of medical 
image intelligent analysis. In the future, a more optimized 
general-template idea can be constructed based on the actual 
characteristics of the medical diagnosis field.  

CONCLUSION 

 This paper describes the development of image analysis 
technology in computer-aided diagnosis. We briefly intro-
duce skin disease image acquisition data and preprocessing 
technology. Starting from the actual needs of skin disease 
diagnosis tasks, the classification, detection and segmenta-
tion tasks of skin diseases are reviewed and expanded more 
methods in skin disease diagnosis tasks, especially deep 
learning. While reviewing the research results in recent 
years, we also discussed the problems currently exposed, 
and provided guidance for future follow-up directions. From 
this review, we can observe that many image analysis meth-
ods have been proposed in various fields of skin disease 
diagnosis, and equivalent or better diagnostic performance 
has been achieved on the experimental skin disease dataset. 
However, we should be aware that there is still a lot of room 
for improvement in aspects of the dataset and model struc-
ture, before image intelligent analysis technology is applied 
to actual clinical systems. We hope that this work will be a 
valuable guide for researchers to make progress in this field. 
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