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Abstract— The redundant manipulators’ analytical solutions
can be obtained by the parameterization method. Multiple
parameterized joints and their corresponding parametric rep-
resentations exist for a redundant manipulator. However, how
to select the optimal parameterized joints has yet to be
well-addressed. This paper delves into the mechanism of the
parameterization method and proposes a method to select
the optimal parametric representations to improve the motion
planning performance of manipulators. We tested the proposed
method on an 8-degree-of-freedom (DOF) manipulator. First,
all feasible parametric representations are derived, followed by
an approach to obtain solution manifolds. We then introduce
a metric called the “feasible rate,” which characterizes the
percentage of the solution manifold in the joint space. This
metric is used to rapidly assess the influence of different
parameterized joints on the manipulator’s motion planning
performance. To verify the proposed method’s correctness, we
evaluated the performance of different representations with
the MOEA/D algorithm in solving the same path optimization
problems based on the algorithm running time and overall
motion magnitude of the manipulator. Our simulation results
demonstrate that different selections of parameterized joints
affect the motion planning performance, and the performance
planned by the optimal parametric representation is up to four
times greater than that of the worst one.

I. INTRODUCTION

Redundant manipulators are now widely used in various
fields and are expected to perform many complex tasks.
Compared to industrial manipulators, redundant manipulators
are more flexible and can realize fault tolerance when dealing
with problems. Obtaining the inverse kinematic solution in
real-time is critical for motion planning [1]–[3]. Obtaining
analytical inverse kinematic (IK) solutions can be chal-
lenging for non-redundant manipulators that do not meet
the Pieper criterion [4], and even more so for redundant
manipulators, which admit an infinite number of solutions.

Several numerical approaches such as jacobian transpose,
pseudoinverse, and damped least square [5] had been pro-
posed. They translated the IK problems into the velocity
domain by the Jacobian matrix, then linearized the joint
space around a point and obtained the feasible solutions
in the linearized velocity domain. Generally, the Jacobian
matrix of redundant manipulators has null space, which is
effectively applied to enable the manipulator to perform
many subtasks, such as obstacle avoidance [6], singularity
avoidance [7], and maximize manipulability [8]. In particular,
these constraint subtasks are usually accomplished within the
framework of task prioritization [9]. These jacobian-based
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approaches can dynamically obtain well-behaved solutions
by adding a closed-loop scheme when tracking the end-
effector’s trajectory. However, due to the existence of joint
limits, they tend to fall into local minima or fail to reach
convergence if the beginning point is poorly situated [10].
Furthermore, such methods cannot analyze the nature of the
global joint space [12].

The position domain IK has the advantage of high preci-
sion and repeatability, which is valuable for application. In
[11], the method to describe redundancy characteristics in
terms of arm angle was first proposed. Shimizu et al. [12]
followed the conception of the arm angle and successfully
applied the arm angle parameterization method to the S-
R-S manipulators. This method is widely used because
of its ability to characterize the self-motion of redundant
manipulators by the arm angle. However, this method is only
applicable to humanoid manipulators with rotating joints
only and arm angle characteristics.

Evolutionary algorithms can efficiently handle IK prob-
lems for manipulators with joint limits. The particle swarm
optimization (PSO) [13] and genetic algorithm (GA) [14], for
example, demonstrated their capability to solve this problem.
The memetic evolutionary algorithm [15] was applied to
robotics and animation. These methods can obtain optimal
feasible solutions from a global perspective and can easily
add subtasks. Unfortunately, with the manipulator’s DOF
increase, these algorithms’ computational complexity grows
geometrically.

Lee and Bejczy [16] proposed the parameterization
method to derive the analytical representation of the ma-
nipulator, using the gradient descent method to optimize
the cost functions iteratively in their application. However,
for manipulators with joint limits, their solution manifold
regarding a specific end pose is usually non-convex, which
causes the disappearance of gradients in certain regions.
The parameterization method reduces decision variables in
manipulators’ motion planning by using redundant joints to
control the mapping between task space and joint space. It
seems to be a natural process to combine this method with
optimization algorithms to solve the planning problem of
manipulators.

Wu. et al. [17] extended the application of the param-
eterization method by deriving the analytical solutions for
a shotcrete manipulator with two prismatic joints. They
parameterized several specific joints to obtain analytical
solutions and used the parameterized variables as decision
variables for inverse kinematics optimization. However, this
paper did not analyze how to select parameterized joints. To
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the best of our knowledge, few studies are currently on this
issue. This article is the first to select parameterized joints
by developing a specific metric.

This paper further explores the parameterization method
based on the work in [17]. The main contributions of this
paper include the following: 1) the application mechanism
of the parameterization method is analyzed deeply, and a
method for ranking parameterized joints based on the geo-
metric characteristics of the solution manifold is proposed. 2)
The proposed method was used to select the best parameter-
ized joints for an 8-DOF manipulator, and it was confirmed
by simulation that the resulting parametric representation
improves the manipulator’s kinematic performance. 3) The
simulation results provide some parameterized joint selection
schemes for manipulators with similar structures.

II. THE PARAMETERIZED ANALYTICAL SOLUTIONS

In this section, the parameterization method is illustrated
in detail, and the parameterized analytic IK expressions of
an 8-DOF manipulator are derived. First, how to represent
the redundancy of the manipulator by the parameterization
method is described. Then, all feasible parametric represen-
tations are obtained and the analytical IK expressions of a
parametric representation are derived.

A. Parameterization of Redundant Joints

Generally, the manipulator’s redundancies mean that the
λ DOFs of the manipulator are greater than the µ DOFs
required to complete the task. The parameterization method
selects specific joints as redundancy parameters and utilizes
these joints to obtain “parameterized” analytical solutions
for the redundant manipulator. In Fig.1, the solving proce-
dure of the parameterized analytical solution is shown. The
parameterization method divides the full joint space of the
manipulator into a parameterized joint space θp ∈ Rλ−µ

and a non-parameterized joint space θr ∈ Rµ, and the
analytical expressions for the latter are derived from the
forward kinematic model. Therefore, the mapping between
the target pose matrix T and the non-parameterized space
θr is written as (1). This mapping is carried out within the
parameterized space θp.

θr = f−1(T, θp) (1)

where f−1 denotes the analytical inverse kinematics derived
using the parameterization method, known as a parametric
representation in this paper.

To further elaborate the parameterization method, we
transform (1) into µ linearly independent equations of the
following form:

gi(θ1, θ2, · · · , θλ) = hi(θ1, θ2, · · · , θλ), i = 1, 2, . . . , µ (2)

where gi and hi represent transcendental equations with joint
angles θi as variables. Since θi does not appear on both
sides of the equation, the left and right sides of (2) are
always unequal. The essence of the parameterization method
is to reduce the number of variables to match constraints

Fig. 1: Parametric analytical inverse kinematic solutions
procedure

and DOFs in the equation system. Ideally, we can obtain
finite analytical solutions by parameterizing only λ−µ joint
variables. Unfortunately, the joint variables in (2) are strongly
coupled. The analytic expressions cannot always be found
even if this equation system satisfies the λ = µ condition.
We can continue increasing the number of parameterized
joints. However, the increase will over-constrain the equation
system, which easily provides wrong solutions and give a
higher challenge to obtain feasible solutions in arithmetic
power consumption.

The method for determining the minimum number of
parameterized joints is as follows: For a certain manipulator,
we find the equations with the least number of variables in
(2) and then derive expressions of the rest joints one by
one. If there is no solution, the number of parameterized
joints increases until all the analytic expressions of non-
parameterized joints are obtained. In this article, only the
λ− µ joint variables of the manipulator are parameterized.

B. Inverse Kinematics Using Parameterization Method

We applied the above method to an 8-degree-of-freedom
shotcrete manipulator with a nozzle as the end-effector. As
shown in Fig. 2, the third and the sixth joint are prismatic
joints, and the rest are all revolute types. The detailed D-
H parameters can be referred from [18]. The posture of the
end-effector can be presented by the product of a series of
homogeneous transformation matrices as shown in (3).

e
0T =

8∏
i=1

i
i−1T · e8T (3)

where the i
i−1T ∈ R4×4 is the transformation matrix from

the coordinate system {i−1} to the {i}. The {0} and the {e}
represent the coordinates fixed to the base and end-effector,
respectively, and the e

0T describes the posture of the end-
effector in the form shown in (4).

e
0T =

[
n o a p

O 1

]
(4)

where the [n o a] ∈ SO(3) and the p ∈ R3×1 specify the
orientation and position of end coordinate system relative
to base one, respectively. Moreover, we denote the elements
located in the mr-th row and mc-th column of the matrix
i
i−1T as (mr,mc).
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Fig. 2: KC-30 manipulator model

The KC-30 requires only five DOFs for the shotcrete
task, so three redundant DOFs can be parameterized: 1)
As the full task space of the KC-30 has six DOFs, there
is one redundant DOF in the task space for the shotcrete
task. We use the XZX Euler angle to determine the nozzle’s
pose of the manipulator. As the second X (recorded as
xe) is related to the nozzle’s movement, its value is not
fixed and should be parameterized. 2) The remaining two
redundant DOFs are naturally chosen from the joint space
and recorded as θx and θy . Thus, we define the parameterized
joints as Gxy={θx, θy, xe} and its corresponding parametric
representation as Rxy .

Generally, multiple parametric representations exist for the
KC-30. To obtain a parametric representation of the KC-
30, we must find three-variable equations with two selected
parameterized joints in forward kinematics (FK). By treating
the parameterized joints as known quantities, we can derive
analytical expressions for the rest joints. Only four initial
equations with three joint variables are found by performing
a series of coordinate transformations on (3). These four
initial equations can be derived from the four expressions
in the second row of 1

eT in the form shown in (5a) - (5d).
As1 +Bc1 = (d67x + l5 + d6)s5 + d56yc5 (5a)
s1ax + c1ay + c5s7 = 0 (5b)
(s1nx + c1ny)c8 + (s1ox + c1oy)s8 = s5 (5c)
Cs7 + (s1ax + c1ay)c7 = 0 (5d)

where A = (px − d78xnx − d78xax − d67zax), B = (py −
d78xny−d78zay−d67zay), C = [(s1ox+c1oy)c8− (s1nx+
c1ny)s8], and the ci and si represent the sin(θi) and cos(θi),
respectively.

Therefore, we only obtain 12 kinds of parametric repre-
sentations for KC-30 based on the parameterization method,
which are grouped into 8 optional parameterized joints
shown in Fig.3. Next, let us select G56 = {θ5, d6, xe} as
an example to derive the parametric representation.

1) Joint 1: The θ1 is obtained from (5a) thatθ1 = atan2(m1,±
√
A2 +B2 −m2

1)− atan2(B,A)

m1 = (d67x + l5 + d6)s5 + d56yc5
(6)

where atan2(y, x) is a bivariate arctangent function.

2) Wrist Joints: Once the first joint is determined, the
solutions for the two wrist joints can be obtained. Turning
the view to (5b) which can derive θ7.θ7 = atan2(s7,±

√
1− s27)

s7 = −(s1ax + c1ay)/c5
(7)

Then, we select the element (2,1) of e
2T to obtain θ8.θ8 = atan2(s5, c5c7)− atan2(m2,±

√
s25 + (c5c7)2 −m2

2)

m2 = s1nx + c1ny

(8)

3) Shoulder Joints: First, we derive the expression of θ24
(i.e. [θ2 + θ4]) by element (1,2) of e

2T .
θ24 = atan2(k1, s7c8)− atan2(m3,±

√
k21 + (s7c8)2 −m2

3)

k1 = c5c8 − s5c7c8

m3 = c1ox − s1oy

(9)

Then, the elements (1,4) and (2,4) of e
2T are combined to

calculate the value of θ2 and θ4.
θ4 = atan2(k2, k3)− atan2(−d23z,±

√
k22 + k23 − d223z)

θ2 = θ24 − θ4

k2 = k4s24 − k5c24 + d56z + d34z

k3 = k4c24 + k5s24 − (l5 + d6)c5 + d56ys5 − a4

(10)

Finally, we select the element (1,4) of e
2T to derive the

analytical expression for d3.

d3 = k6/c2 − l2 (11)

In (10) and (11), the formulas of the k4, k5 and k6
are complex to be shown here. Then, by giving values
to the parameterized joints, the angles of the other joints
can be generated from these expressions. Furthermore, other
parametric representations of KC-30 can be derived by a
similar process.

III. SOLUTION MANIFOLD ANALYSIS OF PARAMETRIC
REPRESENTATIONS

For redundant manipulators, an end-effector pose corre-
sponds to a unique solution manifold. However, the different
parametric representations impact the geometric characteris-
tics of the feasible solution manifolds. This section discusses

Fig. 3: Optional parameterized joints and parametric repre-
sentations for the KC-30
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how to select the optimal parameterization representation
with the solution manifold. First, the ill-conditioned mapping
of the parametric representation is discussed. Then, an algo-
rithm for obtaining the complete feasible solution manifold
is presented. Finally, the effect of ill-conditioned mapping
relations on the solution manifold is verified, and the optimal
parameterized joints are preliminarily selected.

A. Ill-conditioned Mapping

Theoretically, when the end-effector pose is specified,
its feasible configurations should be determined. However,
changing the parameterized joints alters the derivation order
of the non-parameterized ones in different representations,
which may result in unfavourable mappings between all joint
variables. For example, in (5a), the d6 is always mapped to
the θ5 by (12) when the θ1 and the d6 are chosen as the part
of parameterized joints. The θ5 has no solution only if both
independent variables in all atan2(y, x) are zero.


θ5 = atan2(m4,±

√
d256 + k27 −m2

4)− atan2(d56y, k7)

k7 = d67x + l5 + d6

m4 = As1 +Bc1

(12)

Conversely, if the θ5 is chosen as the parameterized joint and
d6 is not, their mapping will follow the form of (13). When
the independent variable θ5 is zero, the d6 has no solutions.

d6 = (As1 +Bc1 − d56yc5)/s5 − d67x − l5 (13)

The mappings among joint variables may be ill-conditioned,
resulting in incomplete mappings between task space and
joint space for certain parametric representations. To investi-
gate the impact of different parameterized joints on this issue,
we can obtain the solution manifold of the manipulator for
an end-accuracy task.

B. Acquisition of A Solution Manifold

An approach for obtaining a solution manifold by travers-
ing all the parameterized joint variables in their joint ranges
is proposed, shown in Algorithm 1.

The functions calmatrix, ikine and fkine in Algorithm
1 are used to generate the target matrix, obtain the analytic
IK solutions and calculate the FK, respectively.

1) Target Matrix T: An end-effector pose X contains five
elements. The first three elements represent the tip position,
and the rest are the first two elements of the XZX Euler
angles. xe is the remaining Euler angle to be traversed. With
these parameters, we can get the target matrix T by the
function calmatrix.

2) IK Solutions Sets S: The function ikine usually gener-
ates multiple sets of solutions S. Considering the properties
of trigonometric functions, we transform the IK solutions in
S into [−180◦, 180◦].

3) Feasible IK solutions: A feasible solution nust satisfy
two requirements: 1) All joints can not violate the joint limit;
2) The matrix norm error between the forward kinematic
matrix Tc obtained by the IK solution and the desired matrix
T should be less than a minimal value ϵ.

Algorithm 1:
Input: tip pose X = [px, py, pz, α, β],

parameterized joints Gxy ,
joints limits θi ∈

[
θli, θ

u
i

]
,

taversal step length Li,
reachable space Θlim

Output: set of feasible configurations P
1 for θx ← θlx to θux by Lx do
2 for θy ← θly to θuy by Ly do
3 for xe ← xl

e to xu
e by Lxe do

4 T ← calmatrix(X,xe);
5 S[1...j]← ikine(θx, θy, T );
6 for k ← 1 to j do
7 Tc ← fkine(S[k]);
8 if S[k] ∈ Θlim & ∥Tc − T∥ ≤ ϵ then
9 P ← S[k];

10 end
11 end
12 end
13 end
14 end

C. Optimal Parameterized Joints

To obtain solution manifolds for all parametric repre-
sentations, we start by setting some parameters. First, we
randomly select an end-effector’s pose X1 as shown in the
first row of TABLE II. Then, set the traversal step of the
revolute joints and prismatic joints as 0.1◦ and 1 mm, and
fix the step length Lxe = 1, respectively. All joint movable
ranges are listed in TABLE I. We select a three-dimensional
space {θ5, d6, xe} ∈ R3 to display a partial characteristic of
the solution manifolds. The running results of algorithm 1
are shown in Fig. 4.

In Fig. 4, the solution manifolds have the same contour
but varying fullness. A metric called the ”Feasibility Rate”
(FR) is proposed to quantify the differences between these
manifolds, which is defined by (14):

FR =
Nm

Nj
× 100% (14)

where Nm and Nj denote the count of feasible configura-
tions within the solution manifold corresponding to an end-
effector’s pose and the number of points traversed in the
joint space, respectively. To ensure the generalizability of
experimental results, we randomly sampled 50 poses in the
reachable space to calculate their FR. However, only three
sets of results are presented in Table II due to article length
constraints.

The experimental data reveal that: 1) Different parametric
representations affect the FR of the solution manifolds. The

TABLE I: Upper and Lower Limits of Each Joint
θ1(◦) θ2(◦) d3(mm) θ4(◦) θ5(◦) d6(mm) θ7(◦) θ8(◦) xe(◦)

θui 45 18 2000 40 60 2000 180 124 180
θli -45 -8 0 -40 -60 0 -180 -116 -180
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(a) solution manifolds from (5a): R15, R16, R56 (b) solution manifolds from (5b): R15, R17, R57

(c) solution manifolds from (5c): R15, R18, R58 (d) solution manifolds from (5d): R17, R18, R78

Fig. 4: Solution manifolds of twelve parametric representations

TABLE II: The Feasible Rate of the Solution Manifold of Different Parametric Representations Corresponding to Different
Target Points

Target Postures
Parametric Representations

(5a) (5b) (5c) (5d)
R15 R16 R56 R15 R17 R57 R15 R18 R58 R17 R18 R78

X1 = [11223.67,−4928.52, 2581.57, 19.00, 50.00] 0.610% 6.41% 12.8% 0.612% 0.122% 0.0972% 0.616% 0.416% 0.311% 0.122% 0.418% 0.0154%
X2 = [9999.23, 620.94, 2373.58, 45.30, 61.20] 0.277% 1.60% 3.57% 0.276% 0.124% 0.0912% 0.277% 0.229% 0.172% 0.123% 0.228% 0.0139%
X3 = [9397.67,−3493.10,−240.52, 173.02, 104.00] 0.325% 2.45% 4.94% 0.320% 0.0173% 0.0303% 0.325% 0.131% 0.116% 0.0173% 0.131% 0.0175%
1 (5a)-(5d) is the four initial equations to derive analytical expressions.
2 the parametric representations of Rxy obtained from different initial equations are different.

representations with the d6 have the fullest manifolds, while
those with the θ7 generate the most sparse. 2) Solution
manifolds with the same parameterized joints have similar
FR values. 3) The relative size among the FR of some
parametric representations varies across different postures.
In column (5b) of Table II, the relative size between the FR
of the solution manifolds generated by R17 and R57 for the
target posture X3 is different from the other two postures.

A complete mapping between task space and joint space
is crucial for motion planning, especially for the path-IK
problem, as it provides a large number of feasible configura-
tions [19]. According to the experimental results, the solution
manifold of the R56 has the largest FR, indicating its poten-
tial to provide the largest number of feasible configurations.
Therefore, we select the parameterized joints G56 as the
optimal choice.

IV. EXPERIMENT

To verify the effectiveness of the previously proposed
method, we apply all parametric representations to solve a
path optimization problem. Moreover, parameter settings and
performance analysis are both illustrated in this section.

A. Task Description

The task optimizes an existing path in the joint space to
obtain a smooth path away from the joint limits, and the
problem can be described by

minimize F (Θ) = fsmooth(Θ) + flimit(Θ)
subject to H(Θ) = Ttarget

Θl ≤ Θ ≤ Θu
(15)

where F (Θ) is the cost function that consists of two terms:
fsmooth is a path-smoothing term that describes the continu-

ity of the manipulator’s motion at the joint space, and flimit

is a limit term that measures the cost of approaching the
joint limit. These terms are fully described in [17]. H(Θ)
is the forward kinematic function. In [17], the proposed
T-IK algorithm has shown excellent performance on this
problem, but the algorithm itself has many parameters related
to the joint properties, such as the interval search operator.
Therefore, we decide to solve our problem with the MOEA/D
algorithm [20], which has fewer parameters to adjust.

B. Parameter Setting

We choose binary codes to describe the decision vari-
ables for each individual and set the resolution of the
joint corresponding to each binary code to be less than
0.1° or 1 mm. The crossover probability and muta-
tion probability are 0.7 and 0.1, respectively, and the
probability of each neighboring individual being selected
for the update is 0.6. Then, the weights of each joint
are [0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125] in
the fsmooth function, while the weights of each joint
are [0.143, 0.143, 0.143, 0.143, 0.143, 0.143, 0, 0.143] in the
flimit function. All the experiments were conducted on a
Legion R9000 laptop with a 3.20GHz processor core.

C. Simulation

We generate two different types of paths and sample the
path points uniformly on them. Then, the desired tip pose of
each point is set according to the task requirements.

1) Circular Arc Path: The first path is a circular arc path
with 129 discrete path points, and the desired tip pose for
each path point is that the tip motion axis coincides with the
circular arc radius.
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TABLE III: Comparison of the Performance of Different Parameterized Joints

Parameterized Joints Average Joint Motions Planning Time(s) Overall Motion Magnitude Synthetic Performance
θ1(◦) θ2(◦) d3(mm) θ4(◦) θ5(◦) d6(mm) θ7(◦) θ8(◦)

Circular Arc Path
G15 3.48 1.82 229.47 4.08 9.43 202.51 33.69 34.07 9.37 0.69 1.28
G16 2.82 1.88 224.13 3.80 7.67 220.63 27.77 29.31 5.22 0.64 0.97
G17 2.90 1.99 199.81 4.55 7.92 173.00 32.42 30.80 43.66 0.64 3.38
G18 3.26 1.98 206.14 4.40 9.07 175.32 38.67 37.93 8.01 0.70 1.20
G56 2.84 1.86 215.70 3.91 8.11 198.85 31.73 32.70 2.52 0.65 0.81
G57 2.44 1.84 197.29 4.15 6.87 162.37 24.70 24.50 34.02 0.56 2.70
G58 3.46 2.09 218.47 4.60 9.89 165.93 36.31 36.54 11.36 0.70 1.42
G78 / / / / / / / / / / /

Straight-line Path
G15 3.35 1.10 210.50 1.90 8.90 185.63 22.21 23.42 39.68 0.54 4.26
G16 4.81 1.25 255.67 2.09 12.6 240.91 37.68 40.39 17.08 0.75 2.36
G17 3.51 1.27 193.66 2.40 9.60 175.66 28.61 30.08 21.20 0.59 2.58
G18 4.36 1.41 204.45 2.61 12.05 189.28 37.20 39.70 12.15 0.70 1.84
G56 4.31 1.16 233.44 1.96 11.73 208.67 35.45 37.92 9.02 0.69 1.54
G57 3.38 1.28 202.20 2.43 9.51 161.73 26.41 27.71 29.75 0.56 3.35
G58 4.15 1.38 218.70 2.55 11.92 179.05 33.64 35.61 16.53 0.67 2.22
G78 / / / / / / / / / / /

* Average Joint Motion, the average motion of each joint between two adjacent desired tip pose after 100 runs; Planning Time, the average planning
time of 100 runs.

2) Straight-line Path: This path is a straight-line grasping
path with 150 discrete path points, and the tip always faces
vertically downward.

As previously mentioned, representations with the same
parameterized joints have similar FRs. Therefore, we only
perform experiments for 8 optional parameterized joints,
and their planning performance is shown in TABLE III.
Moreover, all planning results stay within the joint limits.

To visually describe the smoothness of the path, we
specified an indicator function, as shown in (16).

Em =

8∑
i=1

∆θi
θui − θli

(16)

where Em means overall motion magnitude, and the ∆θi
is the average motions of each joint. In the TABLE III, the
G57 and G15 allow the KC-30 to have minimal motion in
the circular arc and straight-line paths, respectively, because
mainly mobilized joints to complete two paths are different.
However, they both have the worst performance on planning
time, while the G56 has the best. In addition, the G78 is
unable to complete the task in the desired time.

To consider the performance of both aspects together, we
first need to normalize the planning time by

En =
pti√

1
(n−1)

∑n
i=1 (pti −

1
n

∑n
i=1 pti)

2
(17)

where pti is the ith element of the “Planning Time” column.
Then, the synthetic performance is described by

Es = Em + En (18)

The results are listed in the last column of TABLE III,
where the G56 has the smallest value. For those parameter-
ized joints with the smallest overall motion magnitude in the
table, the planning is very time-consuming, which results in
poor overall performance.

According to the experimental results, we obtained the
following three points: 1) The different parameterized joints
selection will affect the task planning results; 2) A suitable

parameterized joint can improve the manipulator’s motion
planning performance by obtaining the optimal solution
manifold, with the optimal performance being up to four
times better than the worst; 3) The feasible rate (FR) can be
used to select the most suitable parameterized joints rapidly,
and for the KC-30 manipulator, the revolute joint θ5 and the
prismatic joint d6 are the best choices.

V. CONCLUSION

This paper proposed a method to select optimal parame-
terized joints to improve the motion planning performance
of the manipulator. We first analyzed the parameterization
method’s mechanism and developed a method to find the
minimum number of parameterized joints. We then applied
this method to an 8-DOF shotcrete manipulator and found
twelve parametric representations that could be grouped into
eight optional parameterized joints. We characterized their
solution manifolds using the feasible rate to distinguish
between different parametric representations and initially
selected G56, which had the fullest solution manifold, as
the best choice.

To verify that well-chosen parameterized joints can im-
prove the manipulator’s motion planning performance, we
combined the parametric representations with the MOEA/D
algorithm to handle the same path-planning task. Comparing
simulations were carried out on circular arc path and straight-
line path, which demonstrated that different parameterized
joints affect the planning performance. In addition, the
proposed method can provide optimal parameterized joints
G56 for the KC-30.

As far as we know, this is the first article to provide
a detailed discussion on selecting parameterized joints and
their effects. In future work, we plan to identify common
patterns in the parameterized joints selection by applying
this method to various types of manipulators.
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[1] F. Marić, M. Giamou, A. W. Hall, S. Khoubyarian, I. Petrović and
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