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ABSTRACT 

 

In this paper, a multimodal magnetic resonance imaging 

(MRI) and heterogeneous metadata (including age, gender) 

dataset containing 263 patients was established. Based on this 

dataset, a new multimodal deep neural network (KiNet) was 

proposed, aiming to effectively predict the Ki67 index in 

gliomas in a non-invasive way by fusing multimodal MRI 

features and metadata. We adopted a five-fold cross-

validation approach to verify the performance of the network. 

KiNet achieved results with an AUC of 0.79 and a kappa 

coefficient of 0.47. The proposed approach’s outperformance 

indicated the feasibility of predicting the Ki67 index in 

gliomas in a non-invasive way.  

 

Index Terms— Ki67 index, KiNet, multi-modal, 

glioma, MRI 

 

1. INTRODUCTION 

 

As the most deadly tumor in central nervous system [1], 

glioma’s several important molecular markers (including 

isocitrate dehydrogenase mutation status and 1p/19q co-

deletion status, etc.) had been identified by the World Health 

Organization (WHO) through the genomic analysis of glioma. 

These markers can make great effect on histopathological 

classification and subtype identification, so as to guide 

doctors to make clinical decisions for glioma patients [2]. 

Among them, the Ki67 index can be used clinically to 

measure the degree of tumor proliferation and predict the 

patient’s survival and recurrence [3]. Generally speaking, 

high Ki67 index corresponds to shorter survival and higher 

recurrence rate [4, 5]. Whereas different Ki67 indexes often 

correspond to different treatment programs, and it will be of 

great guiding significance if the Ki67 index can be obtained 

before the surgery [6]. During this process of determining the 

Ki67 index, it usually requires to sample the tumor tissue, 

stain the tissue using a Ki67 antibody and then calculate the 

proportion of stained cells [7]. However, it might be a big 

challenge to obtain tumor-rich tissue samples to calculate the 

Ki67 index, as a report from The Cancer Genome Atlas 

(TCGA) indicated that, only 35% of biopsy samples contain 

sufficient tumor components which allow accurate molecular 

characterization experiments [8]. Therefore, it is a really good 

news for relevant patients to develop a non-invasive Ki67 

index identification method. 

 

 
 

Figure 1. The multi-modal MRI images of patients with different 

Ki67 indexes. 

 
The most mainstream non-invasive glioma diagnostic 

method is multi-parameter MRI. Figure 1 showed the multi-

modal MRI images of patients with different Ki67 indexes. It 

is convenient for professional physicians to visually compare 

the MRI images of T1C and T2Flair to understand the details 

of the tumor, including its size and location. However, it is 

difficult for them to distinguish the differences in MRI 

images of tumors with different Ki67 indexes. 

In recent years, the identification of molecular markers 

based on non-invasive machine learning has developed very 

rapidly. In 2014, Gevaert et al. demonstrated that imaging has 

the potential to predict the clinical presentation and molecular 

markers of tumors non-invasively [9]. Chang K et al. non-

invasively predicted IDH mutation status of gliomas based on 

conventional MRI images by deep learning with an accuracy 

of 94% [10]. Chandan et al. designed a three-dimensional U-

Net for classifying the 1p/19q co-deletion status of gliomas 

with an accuracy of 93.46% [11]. Matsui et al. demonstrated 

that the simultaneous use of multimodal heterogeneous 

information including MRI and patient’s age and gender can 

achieve higher accuracy in predicting IDH mutation status 

[12]. For multi-modal fusion learning tasks, Valentin et al. 

hypothesized that each modality can be processed by a 

separated deep convolutional network, allowing decisions to 

be made independently of each modality. The characteristics 
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of each modality were fused step by step in the central 

network to improve the accuracy of multi-modal fusion 

methods by introducing multi-task learning [13]. As few 

prediction studies on Ki67 could be found, Fuyong Xing et al. 

designed a weakly supervised semantic segmentation 

network for predicting Ki67 index in tumors based on 

pathological images after staining [14], but no study has been 

found to predict Ki67 index using non-invasive information. 

In this study, a novel multi-modal deep learning network 

(KiNet) was proposed for non-invasive prediction of Ki67 

index. Our approach has implemented the task of non-

invasive prediction of Ki67 index for the first time by 

effectively fusing multimodal MRI and metadata. 

 

2. DATASETS 

 

The data of this study came from patients who visited the 

Department of Neurosurgery of Xiangya Hospital of Central 

South University in recent three years. These medical data 

contained the basic information metadata of the patients, MRI 

images of two modalities (T1C and T2Flair combined 11,894 

images were chosen) in the horizontal position, and Ki67 

index results of postoperative pathological tests of all the 

included 263 patients who were diagnosed with glioma by 

postoperative pathological diagnosis. Among all these cases 

with an age range of 13 to 75 and an average age of 45, 113 

patients were males. 140 cases were of high Ki67 indexes and 

123 cases were of low Ki67 indexes. Initially, we considered 

Ki67 index prediction as a regression task, but the clinically 

acquired Ki67 index itself was a statistical value, so we 

summarized it as a classification task. According to the WHO 

guidelines, Ki67 indexes less than 10% are called low Ki67 

indexes, which was labeled as 0, and the rest are called high 

Ki67 indexes, labeled as 1 [15]. 

 

 
 

Figure 2. Preprocessing of multi-modal heterogeneous data. 
 

Figure 2 showed the data preprocessing procedures. To 

eliminate the interference of non-brain tissues such as skull, 

firstly the brain MRI image was obtained by performing skull 

stripping on the head MRI image, which was labeled with 

tumor location by a physician using Labelimg. Then, the 

brain MRI images of each modality and the labeled tumor 

images were merged into the two-channel images with shape 

of (224, 224, 2), which were called T1C-IN and T2F-IN, 

respectively. In addition, the images of T1C-IN and T2F-IN 

were merged into a four-channel image with shape (224, 224, 

4), called Merge-IN. In order to enhance the generalization 

performance of the algorithm, the image was translated, 

rotated, and flipped for data enhancement. Besides, the mean 

variance normalization operation was also performed before 

training. For the metadata of the patient, the gender and age 

were encoded as a 2×1 vector (gender male was recorded as 

0, while gender female was recorded as 1, and age was 

converted into a floating-point number between 0 and 1 by 

dividing 100), called Vector-IN. 

 

3. METHODS 

 

Multimodal approaches have been used as a key technique 

when performing correlational studies based on medical 

images. The fusion of multimodal can correlate different 

information characteristics from multiple modalities (such as 

multi-modal images generated by multi-parameter MRI of 

glioma in this paper), so as to form a better model decision 

than that based on single modality. 

In the existing studies, multimodal fusion is usually 

divided into early fusion, late fusion and hybrid fusion with 

in which layer the model is fused. However, scholars have 

not been able to agree on which layer of the model to be fused 

can bring the best results. Concatenation, element-wise 

products and other methods are often used to map multi-

modal information features into the same multi-modal model 

spatial dimension [16], which can be regarded as learning a 

joint representation. Unlike this, coordinated representations 

enjoy more complementariness and can maximize the 

relevance of unearthing different multi-modal data 

information representations. 

CentralNet borrowed on two types of representations at 

the same time, and the convolutional neural networks in the 

existing depth which were used to independently process the 

model of a single modality. The model introduced a central 

network proposed to connect the modality specific networks, 

so as to map the representations of different modalities to the 

same common space [13]. 

 

3.1. Framework 

 

In this paper, inspired by the CentralNet, KiNet was proposed 

to predict Ki67 index. The model contains two independent 

auxiliary branches as well as a master branch, with each 

branch containing four feature extraction stages and each of 

stage being composed of several blocks. Such blocks adopt a 

similar structure to ResNeSt block [17], as shown in Figure 

3. After the fourth stage, the classification results are output 

through global average pooling and fully-connected layer. 

Especially, for master branch, multi-scale classification 
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results are obtained by adding fully-connected layer after the 

feature map is output in each stage. 

 

 
 
Figure 3. The architecture of KiNet block.  Among (h, w, c) is the 

height, width, channel of the image input 
 

Figure 4 showed the overall framework of the model. 

The feature maps of T1C-IN, T2F-IN and Merge-IN after 

passing through the shallow feature extractor are used as 

input for master branch after passing through concatenate. 

The input to the second stage of master branch is obtained by 

the output of the previous stage spliced by channel with the 

output of the first stage of the auxiliary branch model. The 

final decision can be obtained by passing the master branch 

multi-scale output with the metadata vector concatenate 

through a fully-connected layer. The code of the KiNet is 

available at https://github.com/XuYongi/KiNet. 

 

3.2. Loss function 

 

A multi-task multi-modal network was constructed for the 

classification of Ki67 index, including the prediction task of 

the independent Auxiliary branch as well as the multi-scale 

prediction task of master branch. Next the loss function in the 

training phase of the network is introduced. 

The ki67 indexes prediction tasks are deemed as a two-

classification task by selecting the cross-entropy loss function, 

as shown in Eq.(1), y is the label of Ki67 index, while p 

represents the prediction label: 

 
𝑙𝑜𝑠𝑠 = −(𝑦 𝑙𝑜𝑔(𝑝) + (1 − 𝑝) 𝑙𝑜𝑔(1 − 𝑝)) (1) 

 

The loss of Master Branch is defined, as shown in Eq.(2): 

 
𝑙𝑜𝑠𝑠𝑚𝑎𝑠𝑡𝑒𝑟 =  𝛽1 × 𝑙𝑜𝑠𝑠𝑠1 + 𝛽2 × 𝑙𝑜𝑠𝑠𝑠2 +

                                                𝛽3 × 𝑙𝑜𝑠𝑠𝑠3 + 𝛽4 × 𝑙𝑜𝑠𝑠𝑠4 + 𝛽5 × 𝑙𝑜𝑠𝑠𝑐𝑎𝑡 (2)
 

 

The total loss function of the model Loss is defined, as shown 

in Eq.(3): 

 
𝐿𝑜𝑠𝑠 = 𝛼1 × 𝑙𝑜𝑠𝑠𝑇1𝐶 +  𝛼2 × 𝑙𝑜𝑠𝑠𝑇2𝐹 + 𝛼3 × 𝑙𝑜𝑠𝑠𝑚𝑎𝑠𝑡𝑒𝑟 (3) 

Where lossT1C、 lossT2F are the losses of two independent 

auxiliary branches, while losssi is the loss of scale output 

extracted by stagei corresponding to master branch, and losscat 

is the loss of output after master branch multi-scale 

classification and metadata concatenating. In our experiments, 

αi (i = 1, 2, 3) = 0.35, 0.25, 0.4, βj (j = 1, 2, 3, 4, 5) = 0.025, 

0.025, 0.2, 0.35, 0.4. 

 

 
 
Figure 4. The overall framework of KiNet (dotted markers are not 

considered during the testing phase). 

 

4. RESULTS AND DISCUSSION 

 

A five-fold cross-validation method was introduced to the 

experiment on basis of the collated dataset. Table 1 showed 

the performance comparison between KiNet and mainstream 

network architecture in the Ki67 index prediction task. 

ResNet-50 [18] and ResNeSt-50 both used the early fusion 

mode of image data superposed through channels in different 

modalities, that is, the input of the network is Merge-IN [19]. 

Figure 5 showed the ROC curves of different neural networks 

for Ki67 index. 

 
Table 1. Predictive performance of different neural networks for 

Ki67 index. 
 

Model Accuracy Se Sp AUC Kappa 

ResNet-50 0.691 0.693 0.689 0.724 0.422 

ResNeSt-50 0.724 0.734 0.715 0.764 0.451 

CentralNet 0.725 0.745 0.705 0.762 0.450 

KiNet 0.752 0.755 0.749 0.788 0.472 

 

It can be seen from the table data that, CentralNet 

performed better for predicting ki67 indexes by using a 

central network to fuse two auxiliary branch multi-level 

features compared with simple modal channel superposition. 

The network architecture proposed by KiNet was more 

conducive to the expression of relatedness between different 

levels of feature information, so that it outperformed the 

mainstream network in this task. 
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Figure 5. the ROC curves of different model for Ki67 index. 

 

To visually demonstrate the role of each sub-module of 

KiNet, ablation experiments were designed to verify the 

effect of sub-modules (multi-scale loss, Merge-IN, Meta-data) 

in KiNet on model performance, in which a five-fold cross-

validation training method was employed. The results of 

ablation experiments of KiNet are given in Table 2. 

 
Table 2. Predictive performance of KiNet ablation experiments. 

 

Num Model 

Multi-

scale 

loss 

Merge-

IN 

Meta-

data 

Acc 

(%） 
AUC 

1 KiNet 

KiNet 

KiNet 

KiNet 

KiNet 

KiNet 

KiNet 

KiNet 

0 0 0 73.5 0.766 

2 0 0 1 73.6 0.768 

3 0 1 0 74.2 0.773 

4 0 1 1 74.3 0.774 

5 1 0 0 74.6 0.778 

6 1 0 1 74.8 0.781 

7 1 1 0 75.0 0.785 

8 1 1 1 75.2 0.788 

0/1 denotes without/with. 
 

According to the data in the table above, Experiment 8 

was of the optimal prediction performance, which validated 

the rationality of the network structure design in KiNet again. 

Experiments 1 and 5 (2 and 6, 3 and 7, 4 and 8) demonstrated 

the effectiveness of multi-scale losses. Losses at different 

scales presented a lot of hidden image noise and feature, 

which would facilitate the model robustness enhancement 

and feature learning. After repeated tuning experiments, it 

was finally determined that the optimal network performance 

was achieved when the multi-scale loss weights β1~β5 were 

set to 0.025, 0.025, 0.2, 0.35 and 0.4, respectively. To some 

extent, it made clear that the deep characteristics would exert 

more effects on the prediction results of the model. Through 

comparing the results of Experiments 1 and 3 (2 and 4, 5 and 

7, 6 and 8), it was found that the addition of additional Merge-

IN could be conducive to Ki67 index prediction in KiNet. 

Merge-IN could effectively realize representation fusion 

among different modalities by directly combining the original 

images. By this input, the model could be easier to learn the 

correlation of shallow feature information such as location 

and gray level of different modality images. It was discovered 

in Experiments 1 and 2 (3 and 4, 5 and 6, 7 and 8) that the 

performance improvement brought about by metadata 

including the gender and age of the patients was less than 

0.2%. The result indicated that the gender and age of the 

patients made smaller improvement in our model for the 

specific task of predicting the Ki67 index for glioma patients. 

Physician explained the reason for this may lie in the wide 

range of glioma populations, and the gender factor has little 

effect on the proliferation ability of glioma.  

In this paper, the master branch structure was finally 

established through multiple exploratory experiments. Under 

the preconceived influence of CentralNet, the element-wise 

sum operation with weights was firstly considered as the 

representation fusion method, in which the weights were 

learnable parameters. To be specific, the weights of element-

wise sum were initialized as uniform distribution for the ki67 

index prediction task. Parameter visualization was performed 

on the trained model to determine the channel ratio of our 

concatenate. As for the input at the last two stages, we 

abandoned the connection of auxiliary branch to streamline 

our network. For the loss weight of each branch, the Ki67 

index was predicted on the independent auxiliary branch to 

set a greater loss weight for T1C auxiliary branch, 

respectively. After multiple debugging parameters, the loss 

weights α1~α3 were finally set as 0.35, 0.4, 025 (T1C 

auxiliary branch, master branch, T2Flair auxiliary branch). 

Compared with networks using element-wise sum operation 

for multimodal feature fusion, KiNet's fusion mode could 

enhance the performance for more than 1%. 

 

5. CONCLUSION 

 

In this paper, a novel multi-modal deep learning network 

(KiNet) was proposed to predict Ki67 index of gliomas non-

invasively based on heterogeneous information including 

multi-modal MRI and metadata. Two auxiliary branches were 

introduced in the network for feature extraction of two modal 

MRI images. Multi-level auxiliary branch features and 

metadata are integrated in master branch, and a multi-scale 

loss was used to supervise the network training process. For 

the first time, the network predicted the Ki67 index of glioma 

non-invasively and achieved results with an AUC of 0.79 and 

a kappa coefficient of 0.47. With this method, physicians are 

promising to obtain the Ki67 index of gliomas and develop a 

more effective treatment plan before surgery. 
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